首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Structural interactions that enable electron transfer to cytochrome‐P450 (CYP450) from its redox partner CYP450‐reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membrane‐bound functional complex to reveal interactions between the full‐length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochrome‐b5 (cyt‐b5), Arg 125 on the C‐helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study protein–protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.  相似文献   

2.
Cytochrome P450 (CYP) 7B1 is a steroid cytochrome P450 7α‐hydroxylase that has been linked directly with bile salt synthesis and hereditary spastic paraplegia type 5 (SPG5). The enzyme provides the primary metabolic route for neurosteroids dehydroepiandrosterone (DHEA), cholesterol derivatives 25‐hydroxycholesterol (25‐HOChol), and other steroids such as 5α‐androstane‐3β,17β‐diol (anediol), and 5α‐androstene‐3β,17β‐diol (enediol). A series of investigations including homology modeling, molecular dynamics (MD), and automatic docking, combined with the results of previous experimental site‐directed mutagenesis studies and access channels analysis, have identified the structural features relevant to the substrate selectivity of CYP7B1. The results clearly identify the dominant access channels and critical residues responsible for ligand binding. Both binding free energy analysis and total interaction energy analysis are consistent with the experimental conclusion that 25‐HOChol is the best substrate. According to 20 ns MD simulations, the Phe cluster residues that lie above the active site, particularly Phe489, are proposed to merge the active site with the adjacent channel to the surface and accommodate substrate binding in a reasonable orientation. The investigation of CYP7B1–substrate binding modes provides detailed insights into the poorly understood structural features of human CYP7B1 at the atomic level, and will be valuable information for drug development and protein engineering.  相似文献   

3.
Cytochrome P450s (P450s) are a superfamily of enzymes responsible for the catalysis of a wide range of substrates. Dynamic interactions between full‐length membrane‐bound P450 and its redox partner cytochrome b5 (cytb5) have been found to be important for the enzymatic activity of P450. However, the stability of the circa 70 kDa membrane‐bound complex in model membranes renders high‐resolution structural NMR studies particularly difficult. To overcome these challenges, reconstitution of the P450–cytb5 complex in peptide‐based nanodiscs, containing no detergents, has been demonstrated, which are characterized by size exclusion chromatography and NMR spectroscopy. In addition, NMR experiments are used to identify the binding interface of the P450–cytb5 complex in the nanodisc. This is the first successful demonstration of a protein–protein complex in a nanodisc using NMR structural studies and should be useful to obtain valuable structural information on membrane‐bound protein complexes.  相似文献   

4.
The structure, dynamics, and function of membrane proteins are intimately linked to the properties of the membrane environment in which the proteins are embedded. For structural and biophysical characterization, membrane proteins generally need to be extracted from the membrane and reconstituted in a suitable membrane‐mimicking environment. Ensuring functional and structural integrity in these environments is often a major concern. The styrene/maleic acid co‐polymer has recently been shown to be able to extract lipid/membrane protein patches directly from native membranes to form nanosize discoidal proteolipid particles, also referred to as native nanodiscs. In this work, we show that high‐resolution solid‐state NMR spectra can be obtained from an integral membrane protein in native nanodiscs, as exemplified by the 2×34 kDa bacterial cation diffusion facilitator CzcD.  相似文献   

5.
Polymer‐based nanodiscs are valuable tools in biomedical research that can offer a detergent‐free solubilization of membrane proteins maintaining their native lipid environment. Herein, we introduce a novel ca. 1.6 kDa SMA‐based polymer with styrene:maleic acid moieties that can form nanodiscs containing a planar lipid bilayer which are useful to reconstitute membrane proteins for structural and functional studies. The physicochemical properties and the mechanism of formation of polymer‐based nanodiscs are characterized by light scattering, NMR, FT‐IR, and TEM. A remarkable feature is that nanodiscs of different sizes, from nanometer to sub‐micrometer diameter, can be produced by varying the lipid‐to‐polymer ratio. The small‐size nanodiscs (up to ca. 30 nm diameter) can be used for solution NMR spectroscopy studies whereas the magnetic‐alignment of macro‐nanodiscs (diameter of > ca. 40 nm) can be exploited for solid‐state NMR studies on membrane proteins.  相似文献   

6.
Polymer‐based nanodiscs are valuable tools in biomedical research that can offer a detergent‐free solubilization of membrane proteins maintaining their native lipid environment. Herein, we introduce a novel ca. 1.6 kDa SMA‐based polymer with styrene:maleic acid moieties that can form nanodiscs containing a planar lipid bilayer which are useful to reconstitute membrane proteins for structural and functional studies. The physicochemical properties and the mechanism of formation of polymer‐based nanodiscs are characterized by light scattering, NMR, FT‐IR, and TEM. A remarkable feature is that nanodiscs of different sizes, from nanometer to sub‐micrometer diameter, can be produced by varying the lipid‐to‐polymer ratio. The small‐size nanodiscs (up to ca. 30 nm diameter) can be used for solution NMR spectroscopy studies whereas the magnetic‐alignment of macro‐nanodiscs (diameter of > ca. 40 nm) can be exploited for solid‐state NMR studies on membrane proteins.  相似文献   

7.
Interactions between membrane proteins and lipids are often crucial for structure and function yet difficult to define because of their dynamic and heterogeneous nature. Here, we use mass spectrometry to demonstrate that membrane protein oligomers ejected from nanodiscs in the gas phase retain large numbers of lipid interactions. The complex mass spectra that result from gas‐phase dissociation were assigned using a Bayesian deconvolution algorithm together with mass defect analysis, allowing us to count individual lipid molecules bound to membrane proteins. Comparison of the lipid distributions measured by mass spectrometry with molecular dynamics simulations reveals that the distributions correspond to distinct lipid shells that vary according to the type of protein–lipid interactions. Our results demonstrate that nanodiscs offer the potential for native mass spectrometry to probe interactions between membrane proteins and the wider lipid environment.  相似文献   

8.
In proteins with buried active sites, understanding how ligands migrate through the tunnels that connect the exterior of the protein to the active site can shed light on substrate specificity and enzyme function. A growing body of evidence highlights the importance of protein flexibility in the binding site on ligand binding; however, the influence of protein flexibility throughout the body of the protein during ligand entry and egress is much less characterized. We have developed a novel tunnel prediction and evaluation method named IterTunnel, which includes the influence of ligand‐induced protein flexibility, guarantees ligand egress, and provides detailed free energy information as the ligand proceeds along the egress route. IterTunnel combines geometric tunnel prediction with steered molecular dynamics in an iterative process to identify tunnels that open as a result of ligand migration and calculates the potential of mean force of ligand egress through a given tunnel. Applying this new method to cytochrome P450 2B6, we demonstrate the influence of protein flexibility on the shape and accessibility of tunnels. More importantly, we demonstrate that the ligand itself, while traversing through a tunnel, can reshape tunnels due to its interaction with the protein. This process results in the exposure of new tunnels and the closure of preexisting tunnels as the ligand migrates from the active site. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Conformational dynamics are thought to play an important role in ligand binding and catalysis by cytochrome P450 enzymes, but few techniques exist to examine them in molecular detail. Using a unique isotopic labeling strategy, we have site specifically inserted a (13)C-labeled unnatural amino acid residue, (13)C-p-methoxyphenylalanine (MeOF), into two different locations in the substrate binding region of the thermophilic cytochrome P450 enzyme CYP119. Surprisingly, in both cases the resonance signal from the ligand-free protein is represented by a doublet in the (1)H,(13)C-HSQC spectrum. Upon binding of 4-phenylimidazole, the signals from the initial resonances are reduced in favor of a single new resonance, in the case of the F162MeOF mutant, or two new resonances, in the case of the F153MeOF mutant. This represents the first direct physical evidence for the ligand-dependent existence of multiple P450 conformers simultaneously in solution. This general approach may be used to further illuminate the role that conformational dynamics plays in the complex enzymatic phenomena exhibited by P450 enzymes.  相似文献   

10.
Pinostrobin (PI, 5‐hydroxy‐7‐methoxyflavanone) is a natural flavonoid known for its rich pharmacological activities. The objective of this study was to identify the human liver cytochrome P450 (CYP450) isoenzymes involved in the metabolism of PI. A single hydoxylated metabolite was obtained from PI after an incubation with pooled human liver microsomes (HLMs). The relative contributions of different CYP450s were evaluated using CYP450‐selective inhibitors in HLMs and recombinant human CYP450 enzymes, and the results revealed the major involvement of CYP1A2, CYP2C9 and CYP2E1 in PI metabolism. We also evaluated the ability of PI to inhibit and induce human cytochrome P450 enzymes in vitro . High‐performance liquid chromatography and liquid chromatography–tandem mass spectrometry analytical techniques were used to estimate the enzymatic activities of seven drug‐metabolizing CYP450 isozymes in vitro . In HLMs, PI did not inhibit CYP 1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 or CYP3A4 (IC50 > 100 μm ). In the induction studies, PI had minimal effects on CYP1A2, CYP2B6and CYP3A4 activity. Based on these results, PI would not be expected to cause clinically significant CYP450 inhibition or induction.  相似文献   

11.
Polymer lipid nanodiscs are an invaluable system for structural and functional studies of membrane proteins in their near‐native environment. Despite the recent advances in the development and usage of polymer lipid nanodisc systems, lack of control over size and poor tolerance to pH and divalent metal ions are major limitations for further applications. A facile modification of a low‐molecular‐weight styrene maleic acid copolymer is demonstrated to form monodispersed lipid bilayer nanodiscs that show ultra‐stability towards divalent metal ion concentration over a pH range of 2.5 to 10. The macro‐nanodiscs (>20 nm diameter) show magnetic alignment properties that can be exploited for high‐resolution structural studies of membrane proteins and amyloid proteins using solid‐state NMR techniques. The new polymer, SMA‐QA, nanodisc is a robust membrane mimetic tool that offers significant advantages over currently reported nanodisc systems.  相似文献   

12.
13.
Gadolinium complexes linked to an apolar fragment are known to be efficiently internalized into various cell types, including hepatocytes. Two lipid‐functionalized gadolinium chelates have been investigated for the targeting of the human liver fatty acid binding protein (hL‐FABP) as a means of increasing the sensitivity and specificity of intracellular‐directed MRI probes. hL‐FABP, the most abundant cytosolic lipid binding protein in hepatocytes, displays the ability to interact with multiple ligands involved in lipid signaling and is believed to be an obligate carrier to escort lipidic drugs across the cell. The interaction modes of a fatty acid and a bile acid based gadolinium complex with hL‐FABP have been characterized by relaxometric and NMR experiments in solution with close‐to‐physiological protein concentrations. We have introduced the analysis of paramagnetic‐induced protein NMR signal intensity changes as a quantitative tool for the determination of binding stoichiometry and of precise metal‐ion‐center positioning in protein–ligand supramolecular adducts. A few additional NMR‐derived restraints were then sufficient to locate the ligand molecules in the protein binding sites by using a rapid data‐driven docking method. Relaxometric and 13C NMR competition experiments with oleate and the gadolinium complexes revealed the formation of heterotypic adducts, which indicates that the amphiphilic compounds may co‐exist in the protein cavity with physiological ligands. The differences in adduct formation between fatty acid and bile acid based complexes provide the basis for an improved molecular design of intracellular targeted probes.  相似文献   

14.
Cnidilin is an active natural furocoumarin ingredient originating from well‐known traditional Chinese medicine Radix Angelicae Dahuricae . In the present study, an efficient approach was developed for the screening and identification of cnidilin metabolites using ultra‐high‐performance liquid chromatography coupled to quadrupole time‐of‐flight mass spectrometry. In this approach, an on‐line data acquisition method multiple mass defect filter combined with dynamic background subtraction was developed to trace all probable metabolites. Based on this analytical strategy, a total of 24 metabolites of cnidilin were detected in human liver microsomal incubation samples and the metabolic pathways were proposed. The results indicated that oxidation was the main biotransformation route for cnidilin in human liver microsomes. In addition, the specific cytochrome P450 (CYP) enzymes involved in the metabolism of cnidilin were identified using chemical inhibition and CYP recombinant enzymes. The results showed that CYP1A2 and CYP3A4 might be the major enzymes involved in the metabolism of cnidilin in human liver microsomes. The relationship between cnidilin and the CYP450 enzymes could provide us a theoretical basis of the pharmacological mechanism.  相似文献   

15.
《Electroanalysis》2017,29(7):1674-1682
Human cytochrome CYP1A2 is one of the major hepatic cytochrome P450s involved in many drugs metabolism, and chemical carcinogens activation. The CYP1A2‐dsDNA interaction in situ evaluation using a DNA‐electrochemical biosensor and differential pulse voltammetry was investigated. A dsDNA‐electrochemical biosensor showed that CYP1A2 interacted with dsDNA causing conformational changes in the double helix chain and DNA oxidative damage. A preferential interaction between the dsDNA guanosine residues and CYP1A2 was found, as free guanine and 8‐oxoguanine, a DNA oxidative damage biomarker, oxidation peaks were detected. This was confirmed using guanine and adenine homopolynucleotides‐electrochemical biosensors. The CYP1A2‐dsDNA interaction and dsDNA conformation changes was also confirmed by UV‐Vis spectrophotometry.  相似文献   

16.
The direct electrochemical and electrocatalytic behavior of the immobilized cytochrome P450 2B6 (CYP2B6) on zirconium dioxide nanoparticles (ZrO2) was investigated. The film of nano‐structured ZrO2 that incorporated cytochrome P450 2B6 (CYP2B6) with colloidal paltin, which was stabilized by poly‐lysine (Pt‐PLL), was prepared on glassy carbon electrodes. In anaerobic solutions, the immobilized CYP2B6 exhibited a reversible electron transfer between the heme electroactive center of CYP2B6 and electrodes with a formal potential of ?(0.449±0.004) V at pH 7.4. In air‐saturated solutions, an increased bioelectrocatalytic reduction current could be obtained with the CYP2B6‐modified electrode with the addition of anticancer drugs, such as lidocaine. This leads to the construction of disposable biosensors for drugs by utilizing the electrochemical activity and catalytic reactions of the immobilized CYP2B6.  相似文献   

17.
Once removed from their natural environment, membrane proteins depend on membrane‐mimetic systems to retain their native structures and functions. To this end, lipid‐bilayer nanodiscs that are bounded by scaffold proteins or amphiphilic polymers such as styrene/maleic acid (SMA) copolymers have been introduced as alternatives to detergent micelles and liposomes for in vitro membrane‐protein research. Herein, we show that an alternating diisobutylene/maleic acid (DIBMA) copolymer shows equal performance to SMA in solubilizing phospholipids, stabilizes an integral membrane enzyme in functional bilayer nanodiscs, and extracts proteins of various sizes directly from cellular membranes. Unlike aromatic SMA, aliphatic DIBMA has only a mild effect on lipid acyl‐chain order, does not interfere with optical spectroscopy in the far‐UV range, and does not precipitate in the presence of low millimolar concentrations of divalent cations.  相似文献   

18.
Transitions among various heme coordination/spin states, heme environments and protein conformations of human cytochrome P450 2C8 were investigated under different denaturing conditions by means of electronic absorption and circular dichroism spectroscopies. It is the first report of it's kind. Our results indicated that the thermal and acid‐induced denaturation could convert P450 2C8 to various P420 forms. In the thermal unfolding process, the ferric P420 thermal form emerged with weakened Fe‐S (thiolate) bond. An absorption band at ca. 425 nm of the ferrous P420 2C8 thermal form was observed, suggesting that the axial Cys435 was protonated or displaced by other ligand. Moreover, the new coordination bond was stabilized when the temperature was cooled down. When binding with CO, the ferrous P420 2C8 thermal form had the protonated thiol of Cys435 as the axial ligand. X‐ray structure of P450 2C8 suggested that the specific structure of the β‐bulge where the axial cysteine ligand located might be the reason of the formation of these P420 2C8 thermal forms. In the acid‐induced unfolding studies, we found that at pH 3.0 the heme could be irreversibly released from the heme pocket of ferric and ferrous P450 2C8. Interestingly, the released heme could form a new coordination bond with an unidentified ligand at the surface of partially unfolded protein when binding with CO at reduced state.  相似文献   

19.
The hydroxylation of nonreactive C−H bonds can be easily catalyzed by a variety of metalloenzymes, especially cytochrome P450s (P450s). The mechanism of P450 mediated hydroxylation has been intensively studied, both experimentally and theoretically. However, understanding the regio- and stereoselectivities of substrates hydroxylated by P450s remains a great challenge. Herein, we use a multi-scale modeling approach to investigate the selectivity of testosterone (TES) and dihydrotestosterone (DHT) hydroxylation catalyzed by two important P450s, CYP3A4 and CYP19A1. For CYP3A4, two distinct binding modes for TES/DHT were predicted by dockings and molecular dynamics simulations, in which the experimentally identified sites of metabolism of TES/DHT can access to the catalytic center. The regio- and stereoselectivities of TES/DHT hydroxylation were further evaluated by quantum mechanical and ONIOM calculations. For CYP19A1, we found that sites 1β, 2β and 19 can access the catalytic center, with the intrinsic reactivity 2β>1β>19. However, our ONIOM calculations indicate that the hydroxylation is favored at site 19 for both TES and DHT, which is consistent with the experiments and reflects the importance of the catalytic environment in determining the selectivity. Our study unravels the mechanism underlying the selectivity of TES/DHT hydroxylation mediated by CYP3A4 and CYP19A1 and is helpful for understanding the selectivity of other substrates that are hydroxylated by P450s.  相似文献   

20.
The relationship between the redox reaction of camphor‐induced cytochrome P‐450 (P‐450cam) and its activity was measured by using cyclic voltammetry. The redox potential of P‐450cam solution shifted to the lower side of the potential by binding of substrate, and the change was proportional to the amount of the substrate binding to the protein. The substrate binding was inhibited at the low concentration of oxygen in the reaction solution. The reaction product, hydroxycamphor, was observed in the reaction mixture by gas chromatography/mass spectroscopy. However, hydroxycamphor was not observed at an oxygen concentration of about a tenth part of the saturated one. The shift of redox potential of P‐450cam solution corresponded to the substrate specificity of the activity. These results suggest that the redox reaction of P‐450cam related to the substrate‐binding to the protein and its activity. Furthermore, the present system was very simple and speedy for the measurement of the activity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号