首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple HPLC‐UV method was developed and validated for the quantification of pterostilbene (3,5‐dimethoxy‐4'‐hydroxy‐trans‐stilbene), a pharmacologically active phytoalexin in rat plasma. The assay was carried out by measuring the UV absorbance at 320 nm. Pterostilbene and the internal standard, 3,5,4'‐trimethoxy‐trans‐stilbene eluted at 5.7 and 9.2 min, respectively. The calibration curve (20–2000 ng/mL) was linear (R2 > 0.997). The lower limits of detection and of quantification were 6.7 and 20 ng/mL, respectively. The intra‐ and inter‐day precisions in terms of RSD were all lower than 6%. The analytical recovery ranged from 95.5 ± 3.7 to 103.2 ± 0.7% while the absolute recovery ranged from 101.9 ± 1.1 to 104.9 ± 4.4%. This simple HPLC method was subsequently applied in a pharmacokinetic study carried out in Sprague–Dawley rats. The terminal elimination half‐life and clearance of pterostilbene were 96.6 ± 23.7 min and 37.0 ± 2.5 mL/min/kg, respectively, while its absolute oral bioavailability was 12.5 ± 4.7%. Pterostilbene appeared to have better pharmacokinetic characteristics than its natural occurring analog, resveratrol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Depression is the largest cause of disability worldwide, affecting 350 million people. Notwithstanding that clinical trials demonstrate antidepressants efficacy, the efficient response can vary individually concerning therapeutic dosage. Although important, plasma levels monitoring remains an analytical challenge whereas clean‐up and pre‐concentration represent critical steps. Therefore, this study aims to develop, optimize and validate a method for fluoxetine determination in human plasma, employing a laboratory‐made device consisting of a PDMS stir bar sorptive for extraction, coupled with high‐performance liquid chromatography–fluorescence detection (SBSE–HPLC–FD). Optimization involved sorption–desorption steps. For sorption, temperature and time were assessed by factorial and central composite design approaches, taking into account the desirability and the response surface results, with stirring speed also examined. For desorption kinetics and ultrasonic and magnetic stirring mode were evaluated. The proposed method after validation was robust, linear (25.00–1000.00 ng mL?1, R2 > 0.98) and presented good intra‐ (RSD 4.18%) and inter‐day‐assay (RSD 11.60%) precision and accuracy (recovery 109.60%), allowing reliable quantitation without interference. The method was successfully applied to real samples. SBSE–HPLC–FD could represent a feasible alternative with good cost–benefit for low‐volume samples and therapeutic drug monitoring, as well as contributing to correlation studies between plasma fluoxetine levels and clinical response, which is still little studied.  相似文献   

3.
A speedy and selective ultra‐HPLC‐MS/MS method for simultaneous determination of deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐ADON), 15‐ADON, nivalenol and fusarenon X in traditional Chinese medicines (TCMs) was developed. The method was based on one‐step sample cleanup using reliable homemade cleanup cartridges. A linear gradient mobile‐phase system, consisting of water containing 0.2% aqueous ammonia and acetonitrile/methanol (90:10, v/v) at a flow rate of 0.4 mL/min, and an Acquity UPLC HSS T3 column (100 mm×2.1 mm, 1.8 μm) were employed to obtain the best resolution of the target analytes. [13C15]–DON was used as the internal standard to accomplish as accurate as possible quantitation. The established method was further validated by determining the linearity (R2≥0.9990), sensitivity (LOQ, 0.29–0.99 μg/kg), recovery (88.5–119.5%) and precision (RSD≤15.8%). It was shown to be a suitable method for simultaneous determination of DON, 3‐ADON, 15‐ADON, nivalenol and fusarenon X in various TCM matrices. The utility and practical impact of the method was demonstrated using different TCM samples.  相似文献   

4.
Carboplatin is an antineoplastic drug administered to treat different tumoral conditions in canine oncology. The objective of this study was to validate a high‐performance chromatographic (HPLC) method which could be applied in canine pharmacokinetic studies. Following ultrafiltration using a Centrifree device, standards, quality controls and plasma samples were separated by isocratic reversed‐phase HPLC on an Inertsil ODS‐2 (250 × 4.6 mm i.d.) analytical column and quantified using UV detection at 220 nm. The mobile phase was potassium phosphate (pH 4.5), with a flow‐rate of 1.0 mL/min. The procedure produced a linear curve (r2 > 0.999) over the concentration range 1–200 μg/mL. The lower limit of quantification was 1 μg/mL. The intra‐assay and inter‐assay precision was ~90%. The overall recovery was ~90%. The method was illustrated with a preliminary pharmacokinetic analysis on nine dogs treated with carboplatin at our hospital. Carboplatin disposition followed a monocompartmental structure in dogs and was characterized by a short half‐life (50 min). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A rapid, simple and sensitive high-performance liquid chromatographic method (HPLC) has been developed to assay ritonavir in semisolid capsules. The HPLC analysis used a reversed-phase C8 (125 × 4.0 mm i.d., 5 μm particle size) analytical column and a mobile phase consisting of methanol and water (67:33, v/v), with UV detection at 210 nm. Specificity was evaluated using a photodiode array detector (PDA). The validation data showed that the assay is sensitive, specific and reproducible for determination of ritonavir in this dosage form. Calibration curves were linear from 100–300 μm L?1 (R2 ≥ 0.999). The accuracy of the method ranged from 98.8 to 102.0%. Mean inter- and intra-assay relative standard deviations (RSD) were less than 1.0%. The proposed method provided an accurate and precise analysis of ritonavir in soft capsules, requiring neither the use of a buffered mobile phase, nor the addition of amine modifiers.  相似文献   

6.
This study describes the development and validation of a highly sensitive and specific enzyme immunoassay (EIA) for therapeutic monitoring and pharmacokinetic studies of atorvastatin (ATR). The assay employs a polyclonal antibody that recognizes ATR with high specificity and affinity, and ATR conjugated to bovine serum albumin (ATR-BSA) immobilized onto microwell plates as a solid phase. The assay involved a competitive binding reaction between ATR and the immobilized ATR-BSA for the binding sites on a limiting amount of the anti-ATR antibody. The bound anti-ATR antibody was quantified with horseradish peroxidase-labeled anti-immunoglobulin secondary antibody and 3,3′,5,5′-tetramethylbenzidine as a substrate for the peroxidase enzyme. The concentration of ATR in the sample was quantified by its ability to inhibit the binding of the anti-ATR antibody to the immobilized ATR-BSA and subsequent color development in the assay wells. The conditions for the EIA were investigated and optimized for the determination of ATR in plasma samples. The limit of detection was 0.04 ng mL?1 and the effective working range at relative standard deviations (RSD) of ≤5% was 0.1–10 ng mL?1. Mean analytical recovery of ATR from spiked plasma was 99.3?±?2.8%. The precision of the assay was satisfactory; RSD were 2.7–4.6 and 3.3–5.7% for intra- and inter-assay precision, respectively. The reliability of the EIA was confirmed by HPLC. The EIA is convenient, and one can analyze ~ 200 samples per working day, facilitating the processing of large-number of samples of ATR.  相似文献   

7.
Electromembrane extraction (EME) and CE with capacitively coupled contactless conductivity detection (CE‐C4D) was applied to rapid and sensitive determination of perchlorate in drinking water and environmental samples. Porous polypropylene hollow fiber impregnated with 1‐heptanol acted as a supported liquid membrane (SLM) and perchlorate was transported and preconcentrated in the fiber lumen on application of electric field. High selectivity of perchlorate determination and its baseline separation from major inorganic anions was achieved in CE‐C4D using background electrolyte solution consisting of 7.5 mM L ‐histidine and 40 mM acetic acid at pH 4.1. The analytical method showed excellent parameters in terms of reproducibility; RSD values for migration times and peak areas at a spiked concentration of 15 μg/L of perchlorate (US EPA recommended limit for drinking water) were below 0.2 and 8.7%, respectively, in all examined water samples. Linear calibration curves were obtained for perchlorate in the concentration range 1–100 μg/L (r2≥0.999) with limits of detection at 1 μg/L for tap water and at 0.25–0.35 μg/L for environmental and bottled potable water samples. Recoveries at 15 μg/L of perchlorate were between 95.9 and 106.7% with minimum and maximum recovery values for snow and bottled potable water samples, respectively.  相似文献   

8.
《Electrophoresis》2017,38(9-10):1334-1343
An analytical methodology based on coprecipitation‐assisted coacervative extraction coupled to HPLC‐UV was developed for determination of five organophosphorus pesticides (OPPs), including fenitrothion, guthion, parathion, methidathion, and chlorpyrifos, in water samples. It involves a green technique leading to an efficient and simple analytical methodology suitable for high‐throughput analysis. Relevant physicochemical variables were studied and optimized on the analytical response of each OPP. Under optimized conditions, the resulting methodology was as follows: an aliquot of 9 mL of water sample was placed into a centrifuge tube and 0.5 mL sodium citrate 0.1 M, pH 4; 0.08 mL Al2(SO4)3 0.1 M; and 0.7 mL SDS 0.1 M were added and homogenized. After centrifugation the supernatant was discarded. A 700 μL aliquot of the coacervate‐rich phase obtained was dissolved with 300 μL of methanol and 20 μL of the resulting solution was analyzed by HPLC‐UV. The resulting LODs ranged within 0.7–2.5 ng/mL and the achieved RSD and recovery values were <8% (n = 3) and >81%, respectively. The proposed analytical methodology was successfully applied for the analysis of five OPPs in water samples for human consumption of different locations of Mendoza.  相似文献   

9.
We developed an analytical method using liquid–liquid extraction (LLE) and liquid chromatography–tandem mass spectrometry (LC‐MS/MS) to detect and quantify tebufenozide (TEB) and indoxacarb (IND) residues in animal and aquatic products (chicken muscle, milk, egg, eel, flatfish, and shrimp). The target compounds were extracted using 1% acetic acid (0.1% acetic acid for egg only) in acetonitrile and purified using n‐hexane. The analytes were separated on a Gemini‐NX C18 column using (a) distilled water with 0.1% formic acid and 5 mm ammonium acetate and (b) methanol with 0.1% formic acid as the mobile phase. All six‐point matrix‐matched calibration curves showed good linearity with coefficients of determination (R2) ≥0.9864 over a concentration range of 5–50 μg/kg. Intra‐ and inter‐day accuracy was expressed as the recovery rate at three spiking levels and ranged between 73.22 and 114.93% in all matrices, with a relative standard deviation (RSD, corresponding to precision) ≤13.87%. The limits of quantification (LOQ) of all target analytes ranged from 2 to 20 μg/kg, which were substantially lower than the maximum residue limits (MRLs) specified by the regulatory agencies of different countries. All samples were collected from different markets in Seoul, Republic of Korea, and tested negative for tebufenozide and indoxacarb residues. These results show that the method developed is robust and may be a promising tool to detect trace levels of the target analytes in animal products.  相似文献   

10.
Biosensors based on field‐effect transistor (FET) structures have attracted considerable attention because they offer rapid, inexpensive parallel sensing and ultrasensitive label‐free detection. However, long‐term repeatable detection cannot be performed, and Ag/AgCl reference electrode design is complicated, which has hindered FET biosensors from becoming truly wearable health‐monitoring platforms. In this paper, we propose a novel wearable detection platform based on AlGaN/GaN high‐electron‐mobility transistors (HEMTs). In this platform, a sweatband was used to continuously collect sweat, and a pH detecting unit and a potassium ion detecting unit were formed by modifying different sensitive films to realize the long‐term stable and repeatable detection of pH and potassium ions. Experimental data show that the wearable detection platform based on AlGaN/GaN HEMTs has good sensitivity (pH 3–7 sensitivity is 45.72 μA/pH; pH 7.4–9 sensitivity is 51.073 μA/pH; and K+ sensitivity is 4.94 μA/lgαK+), stability (28 days) and repeatability (the relative standard deviation (RSD) of pH 3–7 sensitivity is 2.6 %, the RSD of pH 7.4–9 sensitivity is 2.1 %, and the RSD of K+ sensitivity is 7.3 %). Our newly proposed wearable platform has excellent potential for predictive analytics and personalized medical treatment.  相似文献   

11.
《Electroanalysis》2017,29(12):2863-2872
Fullerene Black (FB) and Extracted Fullerene Black (EFB) were used in modified screen‐printed electrodes producing electrochemical transducers (FB‐SPEs and EFB‐SPEs). A complete electrochemical study was performed and the best results are obtained working with FB‐SPEs, especially in terms of: 1. improved electron‐transfer kinetic mechanisms and 2. sensitivity and selectivity toward Acetaminophen (Ac) and Guanine (G). These latter represent two important electro‐active targets to quantify in medicine field application, because: Ac is a preferred alternative (as analgesic‐antipyretic agent) to aspirin, particularly for patients who cannot tolerate aspirin; the oxidation signal of G is useful for the fabrication of emerging analytical tools, such as DNA chipsand user‐friendly diagnostic devices. Ac and G are quantify by using FB‐SPEs electrochemical devices, with an extended linearity (1–300 μM for Ac; 0.1–300 μM for G), an excellent sensitivity (2.82 μA μM−1 cm−2 in the case of Ac; and 0.183 μA μM−1 cm−2 in the case of G), a low detection limit (0.01 μM for Ac; 0.005 μM for G), a very good reproducibility (both: intra‐; inter‐electrodes reproducibility RSD % ranging from 0.3–0.5 for Ac; and 0.50–0.85 for G) and a very fast response time (6 s for Ac; 5 s in the case of G). In addition, high selectivity is obtained at FB‐SPEs, meaning that the FB‐SPEs electrochemical transducers are suitable to simultaneously quantify Ac and G in real samples, having several different (highly concentrated) interference.  相似文献   

12.
A rapid and simple reverse‐phase high‐performance liquid chromatography (RP‐HPLC) was developed and validated for the quantification of kirenol in rat plasma after oral administration. Kirenol and darutoside (internal standard, IS) were extracted from rat plasma using Cleanert™ C18 solid‐phase extraction (SPE) cartridge. Analysis of the extraction was performed on a Thermo ODS‐2 Hypersil C18 reversed‐phase column with a gradient eluent composed of acetonitrile and 0.1% phosphoric acid. The flow rate was 1.0 mL/min and the detection wavelength was set at 215 nm. The calibration curve was linear over the range of 9.756–133.333 µg/mL (r2 = 0.9991) in rat plasma. The lower limits of detection and quantification were 2.857 and 9.756 µg/mL, respectively. The intra‐ and inter‐day precisions (relative standard deviation, RSD) were between 2.24 and 4.46%, with accuracies ranging from 91.80 to 102.74%. The extraction recovery ranged from 98.16 to 107.62% with RSD less than 4.81%. Stability studies showed that kirenol was stable in preparation and analytical process. The present method was successfully applied to the pharmacokinetic study of kirenol in male Sprague–Dawley rats after oral administration at a dose of 50 mg/kg. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Dipyridamole is a classic platelet inhibitor which has been a key medicine in clinical therapy of thrombosis and cerebrovascular disease. A rapid, selective and convenient method using high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) was developed for determination of dipyridamole in human plasma. After protein precipitation of 200 μL plasma with methanol, dipyridamole and diazepam (internal standard) were chromatographed on an Ultimate? XB‐C18 (50 × 2.1 mm i.d, 3 μ) column with the mobile phase consisting of methanol–ammonium acetate (5 mM ; 80 : 20, v/v) at a flow rate of 0.25 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via positive eletrospray ionization source (ESI+). The retention times of dipyridamole and diazepam were 1.4 and 1.2 min, respectively. The method was validated over a concentration range of 0.0180–4.50 μg/mL (r2 ≥ 0.99) with a lower limit of quantitation (LLOQ) of 0.0180 μg/mL for dipyridamole. The intra‐ and inter‐day precisions (RSD) of the assay at all three QC levels were 1.6–12.7% with an accuracy (RE) of ?4.3–1.9%, which meets the requirements of the FDA guidance. The HPLC‐MS/MS method herein described was proved to be suitable for pharmacokinetic study of sustained‐release dipyridamole tablet in volunteers after oral administration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A simple and complete multiresidue method has been developed for the routine determination of 236 pesticides and degradation products, in meat based baby‐food. This original approach combines a modified Quick Easy Cheap Effective Rugged and Safe (QuEChERS) sample preparation method using a triple partitioning extraction step with water/ACN/hexane and a system composed of GC with programmable temperature vaporization injector hyphenated to an IT‐MS. Detection was performed in full scan mode, with one quantification ion and one identification ion. We firstly report here the hexane addition in the extraction step to eliminate a major part of lipophile co‐extracts. Direct consequences were the increasing of method sensitivity and the diminishment of the frequency of maintenance of the analytical instrument. The recovery data were obtained by spiking blank samples at three concentration levels (10, 50 and 200 μg/kg) over five replicates, yielding average recoveries in the range 70–121% with a RSD evaluated between 2–15%. Linearity was fixed in the range of 10–300 μg/kg with determination coefficients (R2) superior or equal to 0.9814 for all target analytes. Best LODs and LOQs were established as 0.03 and 0.1 μg/kg, respectively. Total instrumental analysis of all molecules was carried out in less than 1 h.  相似文献   

15.
Abstract

Sampling (“scrape test”) and analytical procedures were defined to determine PCBs in sorbing solid surfaces such as wall plaster. After sampling, samples were extracted by means of a mechanical device. Following steps included clean-up on a multilayer chromatographic column and assessment with macrobore capillary gas chromatography equipped with an electron capture detector. Mean recovery yields were ≧75% for PCB levels from 2.00 to 7000μg/m2 (0.550–1940 μg/kg). Intralaboratory tests performed by two independent operators yielded: (a) maximum deviation from expected value, 25%; (b) maximum deviation between operators, 17%; and (c) maximum variation coefficient, 20%. Background PCB levels in wall surface layer samples were ≧2.9μg/m2 (≧0.81 μg/kg). The analytical procedure tested with agricultural topsoil samples provided mean recovery yields >65% for PCB levels ≧500 μg/ kg (≧ 50 mg/m2).  相似文献   

16.
Tricaine methanesulfonate is one of most commonly used anesthetics in fish during blood sampling, artificial propagation and long‐distance transportation. In this study, an accurate method for the quantitative determination of tricaine in fish samples by a stable isotope dilution assay coupled with high‐performance liquid chromatography–triple quadrupole mass spectrometry was developed. Tricaine‐D5 was synthesized and used as an isotopically labeled internal standard for the determination of tricaine. The analytical performance of the method was validated for tricaine determination in marine fish and freshwater fish. The determination of tricaine was linear in the range of 2.0–200.0 μg L?1. The limit of detection and limit of quantitation for fish muscle tissues were 1.0 and 4.0 μg kg?1, respectively. Good recoveries were obtained in the range of 92.08–97.50%. The inter‐ and intra‐assay relative standard deviations (RSD values) were investigated, and the values were 0.39–3.01 and 0.85–2.77%, respectively. The values of CCα and CCβ were 10.21–10.43 and 10.42–10.87 μg kg?1, respectively. The clearance of MS‐222 from grass carp was further studied using our method. The results demonstrate that MS‐222 could be well absorbed and rapidly eliminated after bath administration.  相似文献   

17.
This article highlights the potential use of multi‐walled carbon‐nanotube modified screen‐printed electrodes (SPEs) for the amperometric sensing of ciprofloxacin and compares the association of batch‐injection analysis (BIA) and flow‐injection analysis (FIA) with amperometric detection. Both analytical systems provided precise (RSD<5 %) and sensitive determination of ciprofloxacin (LOD<0.1 μmol L?1) within wide linear range (up to 200 μmol L?1). Accuracy of both methods was attested by recovery values (93–107 %) and comparison with capillary electrophoresis. The BIA system is completely portable (especially due to association with SPEs) and provided faster analyses (130 h?1) and more sensitive detection than the FIA system due to the higher flow rates of injection.  相似文献   

18.
A rapid and sensitive reversed‐phase high‐performance liquid chromatographic (RP‐HPLC) method was developed to investigate pharmacokinetics of columbianadin, one of the main bioactive constituents in the roots of Angelica pubescens f. biserrata, in rat plasma after intravenous administration to rats at two doses of 10 and 20 mg/kg. The method involves a plasma clean‐up step using liquid–liquid extraction by diethyl ether, followed by RP‐HPLC separation and detection. Separation of columbianadin was performed on an analytical Diamonsil? ODS C18 column, with a mobile phase of MeOH–H2O (85 : 15, v/v) at a flow‐rate of 1.0 mL/min, and UV detection was set at 325 nm. The retention time of columbianadin and scoparone (internal standard) was 6.7 and 3.5 min, respectively. The calibration curve was linear over the range of 0.2–20.0 μg/mL (r2 = 0.9986) in rat plasma. The lower limits of detection and quantification were 0.05 and 0.1 μg/mL, respectively. The extraction recovery from plasma was in the range of 81.61–89.93%. The intra‐ and inter‐day precisions (relative standard deviation) were between 1.01 and 9.33%, with accuracies ranging from 89.76 to 109.22%. The results indicated that the method established was suitable for the determination and pharmacokinetic study of columbianadin in rat plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Dimethylacetamide (DMA) is a solvent used in the preparation of intravenous busulfan, an alkylating agent used in blood or marrow transplantation. DMA may contribute to hepatic toxicity, so it is important to monitor its clearance. The aim of this study was to develop an HPLC‐UV assay for measurement of DMA in human plasma. After precipitation of plasma proteins with acetonitrile followed by dilution (1:4) with water, the extract was injected onto the HPLC and detected at 195 nm. Separation was performed using a Cogent‐HPS 5 μm C18 column (250 × 4.6 mm) preceded by a Brownlee 7 μm RP18, pre‐column (1.5 cm × 3.2 mm). The mobile phase was 25 mm sodium phosphate buffer (pH 3), containing 2.5% (v /v) acetonitrile and 0.0005% (v /v) sodium‐octyl‐sulfonate. Using a flow rate of 1 mL/min, the retention times of DMA and the internal standard (IS), 2‐chloroacetamide, were 9.5 and 3.5 min, respectively. Peak area ratio (DMA:IS) was a linear function of concentration from 1 to 1000 μg/mL. There was excellent intraday precision (<5% for 5–700 μg/mL DMA), accuracy (<3% deviation from the true concentration) and recovery (74–98%). The limits of detection and quantification were 1 and 5 μg/mL, respectively. In eight children who received intravenous busulfan, DMA concentrations ranged from 110 to 438 μg/mL.  相似文献   

20.
Saflufenacil is a new protoporphyrinogen‐IX‐oxidase inhibitor herbicide. When used, it can enter the soil and has a high risk to reach and contaminate groundwater and aquatic systems. A rapid and sensitive method of ultra‐performance LC with MS/MS was developed for the simultaneous determination of saflufenacil and its two metabolites in soil samples. A modified quick, easy, cheap, effective, rugged, and safe method was applied as the pretreatment procedure. The method was validated by five types of soil samples collected from several regions of China, which all showed good linearity (R2 ≥ 0.9914) and precision (RSD ≤ 26.2%). The average recoveries of the three analytes ranged between 74.1 and 118.9% at spiking levels of 3–300 μg/kg. The method limits of detection (S/N 3:1) and method limits of quantification (S/N 10:1) achieved are in the ranges of 0.25–2.75 and 0.83–9.16 μg/kg, respectively. This indicated that the developed ultra‐performance LC with MS/MS method is a promising analytical tool for monitoring the environmental risks posed by saflufenacil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号