首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学》2018,36(8):674-674
The inside cover picture shows Metal‐organic layer (MOL), the two‐dimensional analog of metal‐organic framework (MOF), is a new member of two‐dimensional materials. This tutorial review summarizes current synthetic approaches for MOL preparation. More details are discussed in the article by Wang et al. on page 754–764.

  相似文献   


2.
The catalytic acceptorless dehydrogenation (CAD) is an attractive synthetic route to unsaturated compounds because of its high atomic efficiency. Here we report electrochemical acceptorless dehydrogenation of N‐heterocycles to obtain quinoline or indole derivatives using metal‐organic layer (MOL) catalyst. MOL is the two‐dimensional version of metal‐organic frameworks (MOF), and it can be constructed on conductive multi‐walled carbon nanotubes via facile solvothermal synthesis to overcome the conductivity constraint for MOFs in electrocatalysis. TEMPO‐OPO32? was incorporated into the system through a ligand exchange with capping formate on the MOL surface to serve as the active catalytic centers. The hybrid catalyst is efficient in the organic conversion and can be readily recycled and reused.  相似文献   

3.
4.
A porous metal–organic framework, Mn(H3O)[(Mn4Cl)3(hmtt)8] (POST‐65), was prepared by the reaction of 5,5′,10,10′,15,15′‐hexamethyltruxene‐2,7,12‐tricarboxylic acid (H3hmtt) with MnCl2 under solvothermal conditions. POST‐65(Mn) was subjected to post‐synthetic modification with Fe, Co, Ni, and Cu according to an ion‐exchange method that resulted in the formation of three isomorphous frameworks, POST‐65(Co/Ni/Cu), as well as a new framework, POST‐65(Fe). The ion‐exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma–atomic emission spectrometry (ICP‐AES), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) surface‐area analysis. Single‐crystal X‐ray diffractions studies revealed a single‐crystal‐to‐single‐crystal (SCSC)‐transformation nature of the ion‐exchange process. Hydrogen‐sorption and magnetization measurements showed metal‐specific properties of POST‐65.  相似文献   

5.
The construction of a new class of covalent TTF lattice by integrating TTF units into two‐dimensional covalent organic frameworks (2D COFs) is reported. We explored a general strategy based on the C2+C2 topological diagram and applied to the synthesis of microporous and mesoporous TTF COFs. Structural resolutions revealed that both COFs consist of layered lattices with periodic TTF columns and tetragonal open nanochannels. The TTF columns offer predesigned pathways for high‐rate hole transport, predominate the HOMO and LUMO levels of the COFs, and are redox active to form organic salts that exhibit enhanced electric conductivity by several orders of magnitude. On the other hand, the linkers between the TTF units play a vital role in determining the carrier mobility and conductivity through the perturbation of 2D sheet conformation and interlayer distance. These results open a way towards designing a new type of TTF materials with stable and predesignable lattice structures for functional exploration.  相似文献   

6.
Synthesizing 2D metal–organic frameworks (2D MOFs) in high yields and rational tailoring of the properties in a predictable manner for specific applications is extremely challenging. Now, a series of porphyrin‐based 2D lanthanide MOFs (Ln‐TCPP, Ln=Ce, Sm, Eu, Tb, Yb, TCPP=tetrakis(4‐carboxyphenyl) porphyrin) with different thickness were successfully prepared in a household microwave oven. The as‐prepared 2D Ln‐TCPP nanosheets showed thickness‐dependent photocatalytic performances towards photooxidation of 1,5‐dihydroxynaphthalene (1,5‐DHN) to synthesize juglone. Particularly, the Yb‐TCPP displayed outstanding photodynamic activity to generate O2? and 1O2. This work not only provides fundamental insights into structure designing and property tailoring of 2D MOFs nanosheets, but also pave a new way to improve the photocatalytic performance.  相似文献   

7.
Two‐dimensional layered transition metal dichalcogenides (TMDs) have attracted great interest owing to their unique properties and a wide array of potential applications. However, due to their inert nature, pristine TMDs are very challenging to functionalize. We demonstrate a general route to functionalize exfoliated 2H‐MoS2 with cysteine. Critically, MoS2 was found to be facilitating the oxidation of the thiol cysteine to the disulfide cystine during functionalization. The resulting cystine was physisorbed on MoS2 rather than coordinated as a thiol (cysteine) filling S‐vacancies in the 2H‐MoS2 surface, as originally conceived. These observations were found to be true for other organic thiols and indeed other TMDs. Our findings suggest that functionalization of two‐dimensional MoS2 using organic thiols may not yield covalently or datively tethered functionalities, rather, in this instance, they yield physisorbed disulfides that are easily removed.  相似文献   

8.
9.
10.
Two‐dimensional (2D) crystals of organic semiconductors (2DCOS) have attracted attention for large‐area and low‐cost flexible optoelectronics. However, growing large 2DCOS in controllable ways and transferring them onto technologically important substrates, remain key challenges. Herein we report a facile, general, and effective method to grow 2DCOS up to centimeter size which can be transferred to any substrate efficiently. The method named “solution epitaxy” involves two steps. The first is to self‐assemble micrometer‐sized 2DCOS on water surface. The second is epitaxial growth of them into millimeter or centimeter sized 2DCOS with thickness of several molecular layers. The general applicability of this method for the growth of 2DCOS is demonstrated by nine organic semiconductors with different molecular structures. Organic field‐effect transistors (OFETs) based on the 2DCOS demonstrated high performance, confirming the high quality of the 2DCOS.  相似文献   

11.
12.
Ordered open channels found in two‐dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks’ dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a strategy for converting a conventional 2D COF into an outstanding platform for carbon dioxide capture through channel‐wall functionalization. The dense layer structure enables the dense integration of functional groups on the channel walls, creating a new version of COFs with high capacity, reusability, selectivity, and separation productivity for flue gas. These results suggest that channel‐wall functional engineering could be a facile and powerful strategy to develop 2D COFs for high‐performance gas storage and separation.  相似文献   

13.
Rational design of organic 2D (O2D) materials has made some progress, but it is still in its infancy. A class of self‐assembling small molecules is presented that form nano/microscale supramolecular 2D materials in aqueous media. A judicial combination of four different intermolecular interactions forms the basis for the robust formation of these ultrathin assemblies. These assemblies can be programmed to disassemble in response to a specific protein and release its non‐covalently bound guest molecules.  相似文献   

14.
15.
We report for the first time the preparation of single polypyrrole (PPy) molecule chains using a “metal‐organic framework” with 1 nm channels as a template. The obtained one‐dimensional (1‐D) PPy has highly structure order and excellent conductivity, which has improved by as much as five orders of magnitude in comparison with that of 2‐D PPy.

  相似文献   


16.
Metal‐organic frameworks (MOFs) are highly promising Lewis acid catalysts; they either inherently possess Lewis acid sites (LASs) on it or the LASs can be generated through various post‐synthetic methods, the later can be performed in MOFs in a trivial fashion. MOFs are suitable platform for catalysis because of its highly crystalline and porous nature. Moreover, with recent advancements, thermal and chemical stability is not a problem with many MOFs. In this Minireview, an enormous versatility of MOFs, in terms of their microporosity/mesoporosity, size/shape selectivity, chirality, pore size, etc., has been highlighted. These are advantageous for designing and performing various targeted organic transformations. Although, many organic transformations catalyzed by MOFs with LASs have been reported in the recent past. In this Minireview, we have restricted ourselves to four important organic reactions: (i) cyanosilylation, (ii) Diels–Alder reaction, (iii) C?H activation, and (iv) CO2‐addition. The discussion focuses mostly on the recent reports (42 examples).  相似文献   

17.
18.
19.
Miniaturizing the size of metal‐organic framework (MOF) crystals to the nanometer scale is challenging, but it provides more advanced applications without changing the characteristic features itself. It is especially useful to investigate the correlation between the porous properties and the interfacial structures of nanocrystals. Using amino acids as capping agents, nanoscale Tb‐MOF‐76 is fabricated rapidly by means of microwave‐assisted methods. Both the modular effects of the amimo acids and the acid–base environment of the reaction medium have an important impact on the morphologies and dimensions of Tb‐MOF‐76. The structures of the samples are confirmed by powder X‐ray diffraction, and the morphologies are characterized by SEM. Photoluminescence studies reveal that these Tb‐MOF‐76 materials exhibit a green emission corresponding to the transition 5D47FJ of Tb3+ ions under UV‐light excitation, which is sensitive to small organic molecules in solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号