首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, dummy molecularly imprinted polymers with high selectivity and affinity to capsaicin and dihydrocapsaicin are designed using N‐vanillylnonanamide as a dummy template. The performance of dummy molecularly imprinted polymers and nonimprinted polymers was evaluated using adsorption isotherms, adsorption kinetics, and selective recognition capacity. Dummy molecularly imprinted polymers were found to exhibit good site accessibility, taking just 20 min to achieve adsorption equilibrium; they were also highly selective toward capsaicin and dihydrocapsaicin. We successfully used dummy molecularly imprinted polymers as a specific sorbent for selectively enriching capsaicin and dihydrocapsaicin from chili pepper samples. In a scaled‐up experiment, the selective recovery of capsaicinoids was calculated to be 77.8% using solid‐phase extraction. To the best of our knowledge, this is the first example of the use of N‐vanillylnonanamide as a dummy template in molecularly imprinted polymers to simultaneously enrich capsaicin and dihydrocapsaicin.  相似文献   

2.
A novel type of magnetic molecularly imprinted polymer was prepared for the selective enrichment and isolation of chelerythrine from Macleaya cordata (Willd) R. Br. The magnetic molecularly imprinted polymers were prepared using functional Fe3O4@SiO2 as a magnetic support, chelerythrine as template, methacrylic acid as functional monomer, and ethylene glycol dimethacrylate as cross‐linker. Density functional theory at the B3LYP/6‐31G (d, p) level with Gaussian 09 software was applied to calculate the interaction energies of chelerythrine, methacrylic acid and the complexes formed from chelerythrine and methacrylic acid in different ratios. The structural features and morphology of the synthesized polymers were characterized by using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and vibration sample magnetometry. Adsorption experiments revealed that the magnetic molecularly imprinted polymers possessed rapid kinetics, high selectivity, and a higher binding capacity (7.96 mg/g) to chelerythrine than magnetic molecularly non‐imprinted polymers (2.36 mg/g). The adsorption process was in good agreement with the Langmuir adsorption isotherm and pseudo‐second‐order kinetics models. Furthermore, the magnetic molecularly imprinted polymers were successfully employed as adsorbents for the extraction and enrichment of chelerythrine from Macleaya cordata (Willd) R. Br. The results indicated that the magnetic molecularly imprinted polymers were suitable for the selective adsorption of chelerythrine from complex samples such as natural medical plants.  相似文献   

3.
In this study, novel photo‐stimulated molecularly imprinted polymers based on magnetic mesoporous carrier surface were developed for selective identification and intelligent separation of sulfamerazine in complex samples. The photosensitive monomer of the molecularly imprinted polymers was azobenzene derivative 5‐[(4‐(methacryloyloxy)phenyl) diazenyl] isophthalic acid with stimulus reaction mechanisms, which has photoisomerization between trans and cis for N=N bonds. Further, the properties of the photo‐stimulated molecularly imprinted polymers were further evaluated through several sets of adsorption experiments. It illustrated that the maximum adsorption amount is 0.45 mmol/L. By ultraviolet spectrophotometry, the material reaches typical characteristic peaks of photo sensitivity, and the cycle time is 16 min. Three adsorption and desorption processes were repeated, the adsorption rate reached 34.4%. Overall, the photo‐stimulated molecularly imprinted polymers can enrich and separate determine sulfamerazine with high selectivity, which have good recovery for real samples.  相似文献   

4.
Surface molecularly imprinted polymers were successfully prepared by a novel two‐step precipitation polymerization method. The first‐step allowed the formation of 4‐vinylpyridine divinylbenzene and trimethylolpropane trimethacrylate copolymeric microspheres. In the second‐step precipitation polymerization, microspheres were modified with a molecularly imprinting layer of oleanolic acid as template, methacrylic acid as functional monomer, and divinylbenzene/ethylene glycol dimethacrylate as cross‐linker. The obtained polymers had an average diameter of 4.43 μm and a polydispersity index of 1.011; adsorption equilibrium was achieved within 40 min, with adsorption capacity reaching 27.4 mg/g. Subsequently, the polymers were successfully applied as the adsorbents of molecularly imprinted solid‐phase extraction to separate and purify the oleanolic acid from grape pomace. The content of oleanolic acid in the grape pomace extract was enhanced from 13.4 to 93.2% after using the molecularly imprinted solid‐phase extraction process. This work provides an efficient way for effective oleanolic acid separation and enrichment from complex matrices, which is especially valuable in industrial production.  相似文献   

5.
Molecularly imprinted polymers were prepared via β‐cyclodextrin‐stabilized oil‐in‐water Pickering emulsion polymerization for selective recognition and adsorption of erythromycin. The synthesized molecularly imprinted polymers were spherical in shape, with diameters ranging from 20 to 40 µm. The molecularly imprinted polymers showed high adsorption capacity (87.08 mg/g) and adsorption isotherm data fitted well with Langmuir model. Adsorption kinetics study demonstrated that the molecularly imprinted polymers acted in a fast adsorption kinetic pattern and the adsorption features of molecularly imprinted polymers followed a pseudo‐first‐order model. Adsorption selectivity analysis revealed that molecularly imprinted polymers had a much better specificity for erythromycin than that for spiramycin or amoxicillin, and the relative selectivity coefficient values on the bases of spiramycin and amoxicillin were 3.97 and 3.86, respectively. The Molecularly imprinted polymers also showed a satisfactory reusability after four times of regeneration. In addition, molecularly imprinted polymers exhibited good adsorption capacities for erythromycin under complicated environment, that is, river water and milk. These results proved that the as‐prepared molecularly imprinted polymers is a potent absorbent for selective recognition of erythromycin, and therefore it may be a promising candidate for practical applications, such as wastewater treatment and detection of erythromycin residues in food.  相似文献   

6.
An S‐mandelic acid imprinted chitosan resin was synthesized by cross‐linking chitosan with glutaraldehyde in 2% acetic acid solution. S‐Mandelic acid imprinted chitosan resin was used to enantioselectively separate racemic mandelic acid in aqueous medium. When keeping the pH of sample solution (100 mM Tris‐H3PO4) at 3.5 and adsorption time at 40 min, the enantiomer excess of mandelic acid in supernatant was 78.8%. The adsorption capacities of S‐mandelic acid imprinted chitosan resin for S‐ and R‐mandelic acid were determined to be 29.5 and 2.03 mg/g, respectively. While the adsorption capacities of non‐imprinted cross‐linked chitosan for S‐ and R‐mandelic acid were 2.10 and 2.08 mg/g, respectively. The result suggests that the imprinted caves in S‐mandelic acid imprinted chitosan resin are highly matched with S‐mandelic acid molecule in space structure and spatial arrangement of action sites. Interestingly, the enantiomer excess value of mandelic acid in supernatant after adsorption of racemic mandelic acid by R‐mandelic acid imprinted cross‐linked chitosan was 25.4%. The higher enantiomer excess value by S‐mandelic acid imprinted chitosan resin suggests that the chiral carbons in chitosan and the imprinted caves in S‐mandelic acid imprinted chitosan resin combine to play roles for the enantioselectivity of S‐mandelic acid imprinted chitosan resin toward S‐mandelic acid. Furthermore, the excellent enantioselectivity of S‐mandelic acid imprinted chitosan resin toward S‐mandelic acid demonstrates that using chiral chitosan as functional monomer to prepare molecularly imprinted polymers has great potential in enantioseparation of chiral pharmaceuticals.  相似文献   

7.
Novel thermosensitive molecularly imprinted polymers were successfully prepared using the epitope imprinting approach in the presence of the mimic template phenylphosphonic acid, the functional monomer vinylphosphonic acid‐Ti4+, the temperature‐sensitive monomer N‐isopropylacrylamide and the crosslinker N,N′‐methylenebisacrylamide. The ratio of the template/thermosensitive monomers/crosslinker was optimized, and when the ratio was 2:2:1, the prepared thermosensitive molecularly imprinted polymers had the highest imprinting factor. The synthetic thermosensitive molecularly imprinted polymers were characterized by Fourier transform infrared spectroscopy to reveal the combination and elution processes of the template. Then, the adsorption capacity and thermosensitivity was measured. When the temperature was 28°C, the imprinting factor was the highest. The selectivity and adsorption capacity of the thermosensitive molecularly imprinted polymers for phosphotyrosine peptides from a mixture of three tailor‐made peptides were measured by high‐performance liquid chromatography. The results showed that the thermosensitive molecularly imprinted polymers have good selectivity for phosphotyrosine peptides. Finally, the imprinted hydrogels were applied to specifically adsorb phosphotyrosine peptides from a sample mixture containing phosphotyrosine and a tryptic digest of β‐casein, which demonstrated high selectivity. After four rebinding cycles, 78.9% adsorption efficiency was still retained.  相似文献   

8.
In this study, we have developed a method to assess adenosine 5?‐triphosphate by adsorptive extraction using surface adenosine 5′‐triphosphate‐imprinted polymer over polystyrene nanoparticles (412 ± 16 nm) for selective recognition/separation from urine. Molecularly imprinted polymer was synthesized by emulsion copolymerization reaction using adenosine 5′‐triphosphate as a template, functional monomers (methacrylic acid, N‐isopropyl acrylamide, and dimethylamino ethylmethacrylate) and a crosslinker, methylenebisacrylamide. The binding capacities of imprinted and non‐imprinted polymers were measured using high‐performance liquid chromatography with UV detection with a detection limit of 1.6 ± 0.02 µM of adenosine 5′‐triphosphate in the urine. High binding affinity (QMIP, 42.65 µmol/g), and high selectivity and specificity to adenosine 5′‐triphosphate compared to other competitive nucleotides including adenosine 5?‐diphosphate, adenosine 5?‐monophosphate, and analogs such as adenosine, adenine, uridine, uric acid, and creatinine were observed. The imprinting efficiency of imprinted polymer is 2.11 for urine (QMIP, 100.3 µmol/g) and 2.51 for synthetic urine (QMIP, 48.5 µmol/g). The extraction protocol was successfully applied to the direct extraction of adenosine 5′‐triphosphate from spiked human urine indicating that this synthesized molecularly imprinted polymer allowed adenosine 5′‐triphosphate to be preconcentrated while simultaneously interfering compounds were removed from the matrix. These submicron imprinted polymers over nano polystyrene spheres have a potential in the pharmaceutical industries and clinical analysis applications.  相似文献   

9.
The objective of this article was to design the selective molecularly imprinted sorbent dedicated to the solid‐phase extraction of S‐pramipexole from the complex matrix such as human urine. For that purpose, S‐2,6‐diamino‐4,5,6,7‐tetrahydrobenzothiazole was used as the template acting as the structural analog of S‐pramipexole and five various monomers were employed in the presence of ethylene glycol dimethacrylate to produce molecularly imprinted polymers. The binding capabilities of resulted polymers revealed that the highest imprinting effect was noted for polymer prepared from the itaconic acid. The comprehensive analysis of morphology and the characterization of binding sites showed not only negligible differences in the extension of surfaces of imprinted and nonimprinted polymers but also higher heterogeneity of binding sites in the imprinted material. Comprehensive optimization of the molecularly imprinted solid‐phase extraction allowed to select the most appropriate solvents for loading, washing, and elution steps. Subsequent optimization of mass of sorbent and volumes of solvents allowed to achieve satisfactory total recoveries of S‐pramipexole from the model multicomponent real sample of human urine that equals to 91.8 ± 3.2% for imprinted sorbent with comparison to only 37.1 ± 1.1% for Oasis MCX.  相似文献   

10.
Molecularly imprinted polymers for strobilurin fungicides were prepared by precipitation polymerization employing azoxystrobin as template molecular together with methacrylic acid monomer and trimethylolpropane triacrylate cross‐linker. Morphological characterization showed molecularly imprinted polymers were uniform spherical particles with about 0.2 μm in diameter, while the morphologies of nonimprinted polymers were irregular bulk. The equilibrium binding and selective experiments proved that molecularly imprinted polymers possessed a higher affinity toward four fungicides compared to nonimprinted polymers and heterogeneous binding sites were found in the molecularly imprinted polymers. Molecularly imprinted solid‐phase extraction conditions, including sample loading solvents, selective washing, and elution solvents, were carefully optimized. The developed method showed good recoveries (70.0–114.0%) with relative standard deviations in range of 1.0–9.8% (n  =  3) for samples (cucumber and peach) spiked at three different levels (10, 50, and 100 μg/ kg). The detection limit (signal/noise = 3) ranged from 0.01 to 0.08 μg/kg. The results demonstrated good potential use of this convenient and highly efficient method for determining trace strobilurin fungicides in agricultural products.  相似文献   

11.
Molecularly imprinted polymers were synthesized using mixed tea saponins as a template and acrylamide‐β‐cyclodextrin as a cofunctional monomer for the specific binding and purification of tea saponins from the defatted cake extract of Camellia oleifera. The adsorption properties of the prepared polymers were systematically evaluated including adsorption kinetics, adsorption isotherms, and selective recognition characteristics. It showed that the adsorption kinetics followed the pseudo first‐order kinetic model (R2 = 0.995) with an equilibrium time of 3 h, adsorption isotherm data fitted well with the Langmuir–Freundlich model (R2 = 0.984) with an adsorption capacity of 14.23 mg/g. The relative selectivity coefficient (k´) in the presence of the analogues glycyrrhizic acid and glycyrrhetinic acid were 1.16 and 17.21, respectively. The performance of the molecularly imprinted polymers as solid‐phase extraction materials was investigated and the results indicated that using acrylamide‐β‐cyclodextrin as a cofunctional monomer improved both the adsorption capacity and active sites stability of the imprinted polymers. The solid‐phase extraction using the polymers as packing materials was subsequently applied for the separation of tea saponins in raw C. oleifera press extract, and targets were obtained with a purity reaching 89%.  相似文献   

12.
Thermo‐responsive magnetic molecularly imprinted polymers were prepared by simple surface molecular imprinting polymerization for the selective adsorption and enrichment of formononetin from Trifolium pretense by temperature regulation. Using formononetin as a template, N‐isopropylacrylamide as the thermo‐responsive functional monomer, and methacrylic acid as an assisting functional monomer, the polymers were synthesized on the surface of the magnetic substrate. The results show that imprinted polymers attained controlled adsorption of formononetin in response to the temperature change, with large adsorption capacity (16.43 mg/g), fast kinetics (60 min) and good selectivity at 35°C compared with that at 25 and 45°C. The selectivity experiment indicated that the materials had excellent recognition ability for formononetin and the selectivity factors were between 1.32 and 2.98 towards genistein and daidzein. The excellent linearity was attained in the range of 5–100 μg/mL, with low detection limits and low quantitation limits of 0.017 and 0.063 μg/mL, respectively. Furthermore, the thermo‐responsive magnetic molecularly imprinted polymers were successfully utilized for enriching and purifying formononetin from Trifolium pretense. The analytical results indicate that the imprinted polymers are promising materials for selective identification and enrichment of formononetin in complicated herbal medicines by simple temperature‐responsive regulation.  相似文献   

13.
A selective sample cleanup method using molecularly imprinted polymers was developed for the separation of domoic acid (a shellfish toxin) from shellfish samples. The molecularly imprinted polymers for domoic acid was prepared by emulsion polymerization using 1,3,5‐pentanetricarboxylic acid as the template molecule, 4‐vinyl pyridine as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, and Span80/Tween‐80 (1:1 v/v) as the composite emulsifiers. The molecularly imprinted polymer showed high affinity to domoic acid with a dissociation constant of 13.5 μg/mL and apparent maximum adsorption capacity of 1249 μg/g. They were used as a selective sorbent for the detection of domoic acid from seafood samples coupled with high‐performance liquid chromatography. The detection limit of 0.17 μg/g was lower than the maximum level permitted by several authorities. The mean recoveries of domoic acid from clam samples were 93.0–98.7%. It was demonstrated that the proposed method could be applied to the determination of domoic acid from shellfish samples.  相似文献   

14.
Double‐templated molecularly imprinted polymers with specific recognition of three matrine‐type alkaloids were prepared using matrine and oxymatrine as the template molecules. An approach based on double‐templated molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and tandem mass spectrometry was then developed to extract and purify matrine, oxymatrine, and sophocarpine from Sophora moorcroftiana in the Tibetan plateau herbs. The polymers were characterized by Fourier‐transform infrared spectroscopy and scanning electron microscopy. Their adsorption characteristics were evaluated using adsorption kinetics, isotherms, selectivity, and recycling experiments. This polymer exhibited excellent molecular recognition ability and good selectivity. The obtained polymers as adsorbent was further used for the determination of three matrine‐type alkaloids coupled to high‐performance liquid chromatography with tandem mass spectrometry, the recoveries of three matrines spiked at three concentration levels in samples were 73.25–98.42% (n = 5) with a relative standard deviation less than 6.82%. The limits of detection for the method were 9.23–15.42 μg/kg (S/N = 3). This proposed method was assessed to be an effective method for simultaneous extraction, isolation, and identification of matrine, oxymatrine, and sophocarpine from Sophora moorcroftiana.  相似文献   

15.
New magnetic molecularly imprinted polymers with two templates were fabricated for the recognition of polysaccharides (fucoidan and alginic acid) from seaweed by magnetic solid‐phase extraction, and the materials were modified by seven types of deep eutectic solvents. It was found that the deep eutectic solvents magnetic molecularly imprinted polymers showed stronger recognition and higher recoveries for fucoidan and alginic acid than magnetic molecularly imprinted polymers, and the deep eutectic solvents‐4‐magnetic molecularly imprinted polymers had the best effects. The practical recovery of the two polysaccharides (fucoidan and alginic acid) purified with deep eutectic solvents‐4‐magnetic molecular imprinted polymers in seaweed under the optimal conditions were 89.87, and 92.0%, respectively, and the actual amounts extracted were 20.6 and 18.7 μg/g, respectively. To sum up, the developed method proved to be a novel and promising method for the recognition of complex polysaccharide samples from seaweed.  相似文献   

16.
Magnetic molecularly imprinted polymer nanoparticles for di‐(2‐ethylhexyl) phthalate were synthesized by surface imprinting technology with a sol–gel process and used for the selective and rapid adsorption and removal of di‐(2‐ethylhexyl) phthalate from aqueous solution. The prepared magnetic molecularly imprinted polymer nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and vibrating sample magnetometry. The adsorption of di‐(2‐ethylhexyl) phthalate onto the magnetic molecularly imprinted polymer was spontaneous and endothermic. The adsorption equilibrium was achieved within 1 h, the maximum adsorption capacity was 30.7 mg/g, and the adsorption process could be well described by Langmuir isotherm model and pseudo‐second‐order kinetic model. The magnetic molecularly imprinted polymer displayed a good adsorption selectivity for di‐(2‐ethylhexyl) phthalate with respect to dibutyl phthalate and di‐n‐octyl phthalate. The reusability of magnetic molecularly imprinted polymer was demonstrated for at least eight repeated cycles without significant loss in adsorption capacity. The adsorption efficiencies of the magnetic molecularly imprinted polymer toward di‐(2‐ethylhexyl) phthalate in real water samples were in the range of 98–100%. These results indicated that the prepared adsorbent could be used as an efficient and cost‐effective material for the removal of di‐(2‐ethylhexyl) phthalate from environmental water samples.  相似文献   

17.
A novel molecularly imprinted polymer based on graphene oxide was prepared as a solid‐phase extraction adsorbent for the selective adsorption and extraction of cyromazine from seawater samples. The obtained graphene oxide molecularly imprinted polymer and non‐imprinted polymer were nanoparticles and characterized by scanning electron microscopy. The imprinted polymer showed higher adsorption capacity and better selectivity than non‐imprinted polymer, and the maximum adsorption capacity was 14.5 mg/g. The optimal washing and elution solvents for molecularly imprinted solid phase extraction procedure were 2 mL of acetonitrile/water (80:20, v/v) and methanol/acetic acid (70:30, v/v), respectively. The recoveries of cyromazine in the spiked seawater samples were in the range of 90.3–104.1%, and the relative standard deviation was <5% (n = 3) under the optimal procedure and detection conditions. The limit of detection of the proposed method was 0.7 μg/L, and the limit of quantitation was 2.3 μg/L. Moreover, the imprinted polymer could keep high adsorption capacity for cyromazine after being reused six times at least. Finally, the synthesized graphene oxide molecularly imprinted polymer was successfully used as a satisfied sorbent for high selectivity separation and detection of cyromazine from seawater coupled with high‐performance liquid chromatography.  相似文献   

18.
A class‐specific macrolide molecularly imprinted polymer was synthesized by precipitation polymerization using tulathromycin as the template and methacrylic acid as the functional monomer. The polymers revealed different specific adsorption and imprinting factor for macrolides with different spatial arrangement of side chains as well as lactonic ring size. And the molecularly imprinted polymer possessed maximum adsorption capacity (54.1 mg/g) and highest imprinting factor (2.4) toward 15‐membered ring azithromycin. On the basis of molecularly imprinted polymer dispersive solid‐phase extraction, a rapid, selective, and reproducible method for simultaneous determination of seven macrolide antibiotics residues in pork was established by using liquid chromatography with tandem mass spectrometry. At spiking levels of 5, 10, 25, and 100 μg/kg, average recoveries of seven macrolides ranged from 68.6 to 95.5% with intraday and interday relative standard deviations below 8%. The limits of detection and limits of quantification were 0.2–0.5 and 0.5–2.0 μg/kg, respectively.  相似文献   

19.
The dummy molecularly imprinted polymers were prepared by Pickering emulsion polymerization. 4,4′‐(1‐Phenylethylidene) bisphenol was selected as the dummy template to avoid the leakage of the target bisphenols. The microsphere particles were characterized by scanning electron microscopy and nitrogen adsorption–desorption measurements, demonstrating that the regular‐shaped and medium‐sized particles (40–70 μm) were obtained with a specific surface area of 355.759 m2/g and a total pore volume of 0.561 cm3/g. The molecular imprinting properties of the particles were evaluated by static adsorption and chromatographic evaluation experiments. The association constant and maximum adsorption amount of bisphenol A were 0.115 mmol/L and 3.327 μmol/g using Scatchard analysis. The microsphere particles were then used as a solid‐phase extraction sorbent for selective extraction of seven bisphenols. The method of dummy molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and diode array detection was successfully established for the extraction and determination of seven bisphenols from environmental sediment samples with method detection limits of 0.6–1.1 ng/g. Good recoveries (75.5–105.2%) for sediment samples at two spiking levels (500 and 250 ng/g) and reproducibility (RSDs < 7.7%, n = 3) were obtained.  相似文献   

20.
In this study, molecularly imprinted polymer fibers for solid‐phase microextraction have been prepared with a single bifunctional monomer, N,O‐bismethacryloyl ethanolamine using the so‐called “one monomer molecularly imprinted polymers” method, replacing the conventional combination of functional monomer and cross‐linker to form high fidelity binding sites. For comparison, imprinted fibers were prepared following the conventional approach based on ethylene glycol dimethacrylate as cross‐linker and methacrylic acid as monomer. The recognition performance of the new fibers was evaluated in the solid‐phase microextraction of parabens, and from this study it was concluded that they provided superior performance over conventionally formulated fibers. Ultimately, real‐world environmental testing on spiked solid samples was successful by the molecularly imprinted solid‐phase microextraction of samples, and the relative recoveries obtained at enrichment levels of 10 ng/g of parabens were within 78–109% for soil and 83–109% for sediments with a relative standard deviation <15% (n = 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号