共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Two new complexes [Cu(dafo)2(en)](ClO4)2·2H2O (en=NH2CH2CH2NH2) 1 and [Cu(dafo)2(dap)](ClO4)2·2H2O [dap=NH2CH2CH(CH3)NH2] 2 (dafo=4,5-diazafluoren-9-one) have been synthesized and characterized by elemental analysis, IR and UV spectra. Meanwhile, the complex 1 has been characterized by single crystal X-ray diffraction analysis. The initial DNA binding interactions of the complexes 1 and 2 have been investigated by UV spectra, emission spectra and cyclic voltammogram. Concluding the results of three methods used to measure the interaction of complexes 1 and 2 with DNA, the action mode of the two complexes with DNA is intercalation, and character of ligands and steric effect may affect the interaction of the complexes with DNA. 相似文献
5.
Electronic,bonding, and optical properties of 1d [CuCN]n (n = 1–10) chains, 2d [CuCN]n (n = 2–10) nanorings,and 3d [Cun(CN)n]m (n = 4, m = 2, 3; n = 10, m = 2) tubes studied by DFT/TD‐DFT methods 下载免费PDF全文
Athanassios C. Tsipis Alexandros V. Stalikas 《Journal of computational chemistry》2015,36(17):1334-1347
The electronic, bonding, and photophysical properties of one‐dimensional [CuCN]n (n = 1–10) chains, 2‐D [CuCN]n (n = 2–10) nanorings, and 3‐D [Cun(CN)n]m (n = 4, m = 2, 3; n = 10, m = 2) tubes are investigated by means of a multitude of computational methodologies using density functional theory (DFT) and time‐dependent‐density‐functional theory (TD‐DFT) methods. The calculations revealed that the 2‐D [CuCN]n (n = 2–10) nanorings are more stable than the respective 1‐D [CuCN]n (n = 2–10) linear chains. The 2‐D [CuCN]n (n = 2–10) nanorings are predicted to form 3‐D [Cun(CN)n]m (n = 4, m = 2, 3; n = 10, m = 2) tubes supported by weak stacking interactions, which are clearly visualized as broad regions in real space by the 3D plots of the reduced density gradient. The bonding mechanism in the 1‐D [CuCN]n (n = 1–10) chains, 2‐D [CuCN]n (n = 2–10) nanorings, and 3‐D [Cun(CN)n]m (n = 4, m = 2, 3; n = 10, m = 2) tubes are easily recognized by a multitude of electronic structure calculation approaches. Particular emphasis was given on the photophysical properties (absorption and emission spectra) of the [CuCN]n chains, nanorings, and tubes which were simulated by TD‐DFT calculations. The absorption and emission bands in the simulated TD‐DFT absorption and emission spectra have thoroughly been analyzed and assignments of the contributing principal electronic transitions associated to individual excitations have been made. © 2015 Wiley Periodicals, Inc. 相似文献
6.
Lifang Chen Juncheng Hu Dr. Sib Sankar Mal Dr. Ulrich Kortz Prof. Helge Jaensch Dr. Georges Mathys Dr. Ryan M. Richards Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(30):7490-7497
The selective oxidation of alkanes as a green process remains a challenging task because partial oxidation is easier to achieve with sacrificial oxidants, such as hydrogen peroxide, alkyl hydroperoxides or iodosylbenzene, than with molecular oxygen or air. Here, we report on a heterogeneous catalyst for n‐hexadecane oxidation comprised of the wheel shaped Cu20‐polyoxotungstate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25? anchored on 3‐aminopropyltriethoxysilane (apts)‐modified SBA‐15. The catalysts were characterized by powder X‐ray diffraction (XRD), N2‐adsorption measurements and Fourier transform infrared reflectance (FT‐IR) spectroscopy. The heterogeneous Cu20‐polyanion system catalyzed the solvent‐free aerobic oxidation of n‐hexadecane to alcohols and ketones by using air as the oxidant under ambient conditions. The catalyst exhibits an exceptionally high turn over frequency (TOF) of 20 000 h?1 at 150 °C and is resistant to poisoning by CS2. Moreover, it can be easily recovered and reused by filtration without loss of its catalytic activity. Possible homogeneous contributions also have been examined and eliminated. Thus, this system can use air as oxidant, which, in combination with its good overall performance and poison tolerance, raises the prospect of this type of heterogeneous catalyst for practical applications. 相似文献
7.
Theoretical study of the stability and properties of magic numbers (m = 5, n = 2) and (m = 6, n = 3) of bimetallic bismuth‐copper nanoclusters; Bim Cun 下载免费PDF全文
Alan Miralrio Arturo Hernández‐Hernández Jose A. Pescador‐Rojas Enrique Sansores Pablo A. López‐Pérez Francisco Martínez‐Farías Eduardo Rangel Cortes 《International journal of quantum chemistry》2017,117(24)
Inspired by the experimental discovery of magic numbers we present a first study using density functional theory for the structure and properties of neutral and cationic Bi6Cu3 and Bi5Cu2 clusters. Our results confirm predictions based on Wade's rules. The closed electron shells, characteristic of cationic clusters help impose enhanced stability, while also complying with Wade's rules. Charge distribution analysis, as well as electrostatic potential maps show that in almost all cases, Bi atoms donate charges to Cu atoms. According to the analysis of condensed Fukui indices, Cu atoms inside both clusters are not reactive. Contrastingly, Bi atoms are reactive and may be targeted by different types of attack. This study of the electronic properties may thus help to determine experimental strategies with the capacity to enhance the synthesis of catalysts. 相似文献
8.
Cu‐Catalyzed Aerobic Oxidative Cyclizations of 3‐N‐Hydroxyamino‐1,2‐propadienes with Alcohols,Thiols, and Amines To Form α‐O‐, S‐, and N‐Substituted 4‐Methylquinoline Derivatives 下载免费PDF全文
Pankaj Sharma Prof. Dr. Rai‐Shung Liu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(12):4590-4594
A one‐pot, two‐step synthesis of α‐O‐, S‐, and N‐substituted 4‐methylquinoline derivatives through Cu‐catalyzed aerobic oxidations of N‐hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N‐hydroxyaminoallenes with NuH (Nu=OH, OR, NHR, and SR) to form 3‐substituted 2‐en‐1‐ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical‐type mechanism rather than a typical nitrone‐intermediate route. The utility of this new Cu‐catalyzed reaction is shown by its applicability to the synthesis of several 2‐amino‐4‐methylquinoline derivatives, which are known to be key precursors to several bioactive molecules. 相似文献
9.
Dibyendu Mahato Lalita Sharma Rajesh Srivastava 《International journal of quantum chemistry》2022,122(1):e26815
A study is presented on the elastic scattering of electrons from Nq+ (q = 1–3), Na+, Arq+ (q = 1–3, 7–8), Xeq+ (q = 2–6, 8) to understand the available experimental differential cross section results. A model potential approach has been utilized to describe the scattering process. The model potential includes the static, exchange, polarization and absorption potentials. The static potentialis obtained through the charge density calculated by obtaining ionic wave functions using multi-configuration Dirac-Fock (MCDF) approximation. Thereafter, the static potential is added to the suitable exchange, polarisation and absorption potentials to construct the spherically averaged complex optical potential. Using the obtained potential in the Dirac equations,these are solved with the partial wave phase shift analysis method and the differential cross sections are calculated. Results for different ions exhibit prominent interference structures in the energy versus cross section curves and show good agreement on comparison with the experimental results available in the selected energy ranges. 相似文献
10.
11.
Organometallic Compounds of Copper. XX On the Reaction of the Alkyne Copper(I) Complexes [CuCl(S‐Alkyne)] and [Cu2Br2(S‐Alkyne)(dms)] (S‐Alkyne = 3,3,6,6‐Tetramethyl‐1‐thiacyclohept‐4‐yne; dms = Dimethylsulfide) with the Lithiumorganyls Phenyllithium und Fluorenyllithium The alkyne copper(I) bromide complex [Cu2Br2(S‐Alkyne)(dms)] ( 3 b ) (S‐Alkyne = 3,3,6,6‐tetramethyl‐1‐thiacyclohept‐4‐yne; dms = dimethylsulfide) reacts with phenyllithium to form a tetranuclear copper(I) complex of the composition [Cu4(C6H5)2(S‐Alkenyl)2] ( 7 ) in low yield (4%). The reaction of the alkyne copper(I) chloride complex [CuCl(S‐Alkyne)] ( 2 a ) with fluorenyllithium in tetrahydrofuran (thf) affords a lithium cuprate of the composition [Li(thf)4]+ [Cu2(fluorenyl)3(S‐Alkyne)2]– ( 8 ) (yield 32%). The structures of both new complexes 7 and 8 were determined by X–ray diffraction. 相似文献
12.
《Chemphyschem》2003,4(1):72-78
The Cu+ and Ni+ binding energies of ethynylamine, ethynylphosphine and ethynylarsine have been calculated at the B3LYP/6‐311+G(2df,2p)//B3LYP/6‐311G(d,p) level of theory. Significant differences between nitrogen‐containing and phosphorus‐ or arsenic‐containing compounds have been found regarding structural effects upon metal cation association. While for ethynylamine the global minimum of the potential energy surface corresponds to the complex in which the metal cation binds to the β‐carbon, for ethynylphosphine the most favourable process corresponds to phosphorus attachment. For ethynylarsine, the conventional π‐complex is the most stable one. This behavior resembles that found for the corresponding vinyl analogues, with the only exception being the arsenic derivative. The calculated Cu+ and Ni+ binding energies for attachment to the heteroatom follow a different trend, P>As>N, to that predicted for the corresponding proton affinities, P>N>As. Cu+ and Ni+ binding energies are almost identical when the metal cation binds to the heteroatom. However, Ni+ binding energies are slightly larger than Cu+ binding energies when the metal cation interacts with the C?C bond. 相似文献
13.
14.
For the first time, we utilized multifunctional nanoparticles composite (NPs composite) for matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) analysis of peptides and proteins. Multiwalled carbon nanotubes doped with Cd(2+) ions and modified with cadmium sulfide NPs were synthesized by a chemical reduction method at room temperature. The multifunctional NPs composite applied for the analysis of peptides and microwave-digested proteins in the atmospheric pressure matrix-assisted laser desorption/ionization ion-trap and MALDI time-of-flight (TOF) mass spectrometry (MS) was successfully demonstrated. The maximum detection sensitivity for peptides in MALDI-MS was achieved by the adsorption of negatively charged peptides onto the surfaces of NP composite through electrostatic interactions. The optimal conditions of peptide mixtures were obtained at 20 min of incubation time using 1 mg of NPs composite when the pH of the sample solution was kept higher than the pI values of peptides. The potentiality of the NP composite in the preconcentration of peptides was compared with that of the individual NP by calculating the preconcentration factors (PF) and found that the NPs composite showed a 4-6 times of PF than the other NPs. In addition, the NPs composite was also applied as heat-absorbing materials for efficient microwave tryptic digestion of cytochrome c and lysozyme from milk protein in MALDI-TOF-MS analysis. We believe that the use of NPs composite technique would be an efficient and powerful preconcentrating tool for MALDI-MS for the study of proteome research. 相似文献
15.
A novel synthesis of the functional carbohydrate 2-amino-2-deoxy-D-gluconic acid was introduced and itscomplex formation with Cu(Ⅱ)was investigated to obtain the stability constant for its further applications to thefood and pharmaceutical industries.The equilibrium was investigated by spectrophotometric measurements andprocessed by dual-series linear regression method.Results:the yield of 2-amino-2-deoxy-D-gluconic acid is 70%.The complexation molar ratio is 1:2,the molar apsorptivity of the complex is 39.906 L·mol~(-1)·cm~(-1) at 630 nm,and the stability constant β_n is 6.24×10~5. 相似文献
16.
The Double‐Histidine Cu2+‐Binding Motif: A Highly Rigid,Site‐Specific Spin Probe for Electron Spin Resonance Distance Measurements 下载免费PDF全文
Timothy F. Cunningham Miriam R. Putterman Astha Desai Prof. W. Seth Horne Prof. Sunil Saxena 《Angewandte Chemie (International ed. in English)》2015,54(21):6330-6334
The development of ESR methods that measure long‐range distance distributions has advanced biophysical research. However, the spin labels commonly employed are highly flexible, which leads to ambiguity in relating ESR measurements to protein‐backbone structure. Herein we present the double‐histidine (dHis) Cu2+‐binding motif as a rigid spin probe for double electron–electron resonance (DEER) distance measurements. The spin label is assembled in situ from natural amino acid residues and a metal salt, requires no postexpression synthetic modification, and provides distance distributions that are dramatically narrower than those found with the commonly used protein spin label. Simple molecular modeling based on an X‐ray crystal structure of an unlabeled protein led to a predicted most probable distance within 0.5 Å of the experimental value. Cu2+ DEER with the dHis motif shows great promise for the resolution of precise, unambiguous distance constraints that relate directly to protein‐backbone structure and flexibility. 相似文献
17.
Copper(II) and Sodium(I) Complexes based on 3,7‐Diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane‐5‐oxide: Synthesis,Characterization, and Catalytic Activity 下载免费PDF全文
《化学:亚洲杂志》2018,13(19):2868-2880
The reaction of 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane (DAPTA) with metal salts of CuII or NaI/NiII under mild conditions led to the oxidized phosphane derivative 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane‐5‐oxide (DAPTA=O) and to the first examples of metal complexes based on the DAPTA=O ligand, that is, [CuII(μ‐CH3COO)2(κO‐DAPTA=O)]2 ( 1 ) and [Na(1κOO′;2κO‐DAPTA=O)(MeOH)]2(BPh4)2 ( 2 ). The catalytic activity of 1 was tested in the Henry reaction and for the aerobic 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO)‐mediated oxidation of benzyl alcohol. Compound 1 was also evaluated as a model system for the catechol oxidase enzyme by using 3,5‐di‐tert‐butylcatechol as the substrate. The kinetic data fitted the Michaelis–Menten equation and enabled the obtainment of a rate constant for the catalytic reaction; this rate constant is among the highest obtained for this substrate with the use of dinuclear CuII complexes. DFT calculations discarded a bridging mode binding type of the substrate and suggested a mixed‐valence CuII/CuI complex intermediate, in which the spin electron density is mostly concentrated at one of the Cu atoms and at the organic ligand. 相似文献
18.
Cu(I)–NHC‐Catalyzed Silylation of Allenes: Diastereoselective Three‐Component Coupling with Aldehydes 下载免费PDF全文
James Rae Ya Chu Hu Prof. Dr. David J. Procter 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(41):13143-13145
Copper‐catalyzed silylation of aryl allenes using a silylborane reagent affords vinyl silane building blocks with high efficiency. The use of a seven‐membered NHC ligand proved crucial for high regioselectivity. The catalytically generated allylcoppper intermediates were intercepted by aldehydes in a diastereoselective three‐component coupling to furnish homoallylic alcohols. 相似文献
19.
20.
The complex [Cu(L‐Phe)(TATP)(H2O)]ClO4.0.5H2O has been synthesized and investigated by elemental analysis, molar conductivity, spectroscopic and X‐ray diffraction methods, where TATP= 1,4,8,9‐tetraazatriphenylene and L‐phe = L‐phenylaninate group. The complex crystallizes in the triclinic space group PI with two molecules in a unit cell of dimensions a=0.5730(l), b = 1.0190(2), c = 2.1430(4), α= 97.50 (1)°, β = 95.33(3)°, γ= 102.85(1)°, V= 1.1998(4) nm3, R1 = 0.0360, wR2 = 0.0400. The crystal contains two independent [Cu(L‐Phe) (TATP)(H2O)]+ complexes Cu1 and Cu2, having essentially the same distorted square‐pyramidal structure, where each Cu(II) ion coordinates two nitrogen atoms of TATP and the amino nitrogen and carboxylate oxygen atoms of L‐Phe in the equatorial positions and one water oxygen at an axial position. 相似文献