首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene was successfully prepared and well separated to individual sheets by introducing  SO3. XRD and TEM were employed to characterize the graphene. UV‐visible absorption spectra indicated that glucose oxidase (GOx) could keep bioactivity well in the graphene‐Au biocomposite. To construct a novel glucose biosensor, graphene, Au and GOx were co‐immobilized in Nafion to further modify a glassy carbon electrode (GCE). Electrochemical measurements were carried out to investigate the catalytic performance of the proposed biosensor. Cyclic voltammograms (CV) showed the biosensor had a typical catalytic oxidation response to glucose. At the applied potential +0.4 V, the biosensor responded rapidly upon the addition of glucose and reached the steady state current in 5 s, with the present of hydroquinone. The linear range is from 15 μM to 5.8 mM, with a detection limit 5 μM (based on the S/N=3). The Michaelis‐Menten constant was calculated to be 4.4 mM according to Lineweaver–Burk equation. In addition, the biosensor exhibits good reproducibility and long‐term stability. Such impressive properties could be ascribed to the synergistic effect of graphene‐Au integration and good biocompatibility of the hybrid material.  相似文献   

2.
A novel complex material was fabricated by three steps. In the first step, gold nanoparticle (Aunano) was prepared with the method of chemistry and dialysis. In the second step, 4‐aminothiophenol (AT) was encapsulated in the cavity of β‐cyclodextrin and formed inclusion complex, cyclodextrin/4‐aminothiophenol (CD/AT). And then inclusion complex was adsorbed to the surface of Aunano based on the bond of Au‐S interaction. In the last step, a complex material, cyclodextrin/poly(4‐aminothiophenol)‐Au nanoparticles (CD/PAT‐Aunano) was obtained by the polymerizing in the acid solution initiated by chlorauric acid. The CD/PAT‐Aunano has spherical nanostructure with the average diameter of 55 nm. Glucose oxidase (GOx) was anchored with this complex material and direct electrochemistry of GOx was achieved. A couple of stable and well‐defined redox peaks were observed with the formal potential (E0′) of ‐0.488 V (vs. SCE) in a pH 6.98 buffer solution. The GOx modified electrode also exhibited an excellent electrocatalytic activity to the reduction of glucose, a linearity range for determination of glucose is from 0.25 mM to 16.0 mM with a detection limit of 0.09 mM (S/N = 3). This protocol had potential application to fabricate the third‐generation biosensor.  相似文献   

3.
《Electroanalysis》2017,29(5):1267-1277
Graphite rod (GR) modified with electrochemicaly deposited gold nanoparticles (AuNPs) and adsorbed glucose oxidase (GOx) was used in amperometric glucose biosensor design. Enzymatic formation of polypyrrole (Ppy) on the surface of GOx/AuNPs/GR electrode was applied in order to improve analytical characteristics and stability of developed biosensor. The linear glucose detection range for Ppy/GOx/AuNPs/GR electrode was dependent on the duration of Ppy‐layer formation and the linear interval was extended up to 19.9 mmol L−1 after 21 h lasting synthesis of Ppy. The sensitivity of the developed biosensor was determined as 21.7 μA mM−1 cm−2, the limit of detection – 0.20 mmol L−1. Ppy/GOx/AuNPs/GR electrodes demonstrated advanced good stability (the t 1/2 was 9.8 days), quick detection of glucose (within 5 s) in the wide linear interval. Additionally, formed Ppy layer decreased the influence of electroactive species on the analytical signal. Developed biosensor is suitable for the determination of glucose in human serum samples.  相似文献   

4.
A simple procedure was developed to prepare a glassy carbon electrode modified with multi walled carbon nanotubes (MWCNTs) and Celestin blue. Cyclic voltammograms of the modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range (2–12). The formal potential of redox couple (E′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of Celestine blue immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2. The charge transfer coefficient (α) and heterogeneous electron transfer rate constants (ks) for GC/MWCNTs/Celestine blue were 0.43 and 1.26 s?1, respectively. The modified electrode show strong catalytic effect for reduction of hydrogen peroxide and oxygen at reduced overpotential. The glucose biosensor was fabricated by covering a thin film of sol‐gel composite containing glucose oxides (GOx) on the surface of Celestine blue /MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 0.3 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. The accuracy of the biosensor for glucose detection was evaluated by detection of glucose in a serum sample, using standard addition protocol. In addition biosensor can reach 90% of steady currents in about 3.0 sec and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) was eliminated. Furthermore, the apparent Michaelis–Menten constant 2.4 mM, of GOx on the nano composite exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of glucose biosensor.  相似文献   

5.
A sensitive voltammetric method was developed to determine maltose in beverage products using a carbon nanostructured screen‐printed electrode modified with CuO/glucose oxidase/maltase/SiO2 biocomposite film. Adding CuO particles was done to possess catalytic activity toward hydrogen peroxide. Electrode modified by glucose oxidase and maltase shows a good response to maltose. A well‐defined reduction peak was registered at the potential of ?0.55 V (vs. Ag/AgCl) which intensity increases linearly with the concentration of maltose ranging from 0.01 to 0.1 mmol L?1. The calculated limit of detection was 0.005 mmol L?1. Tested on the beer samples, the developed CuO/glucose oxidase/maltase/SiO2 biocomposite film covered carbon nanostructured screen‐printed electrode is showed to be a prospective sensitive element of the third generation biosensor for maltose.  相似文献   

6.
《Electroanalysis》2017,29(11):2507-2515
In the present study, a novel enzymatic glucose biosensor using glucose oxidase (GOx) immobilized into (3‐aminopropyl) triethoxysilane (APTES) functionalized reduced graphene oxide (rGO‐APTES) and hydrogen peroxide sensor based on rGO‐APTES modified glassy carbon (GC) electrode were fabricated. Nafion (Nf) was used as a protective membrane. For the characterization of the composites, Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffractometer (XRD), and transmission electron microscopy (TEM) were used. The electrochemical properties of the modified electrodes were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The resulting Nf/rGO‐APTES/GOx/GC and Nf/rGO‐APTES/GC composites showed good electrocatalytical activity toward glucose and H2O2, respectively. The Nf/rGO‐APTES/GC electrode exhibited a linear range of H2O2 concentration from 0.05 to 15.25 mM with a detection limit (LOD) of 0.017 mM and sensitivity of 124.87 μA mM−1 cm−2. The Nf/rGO‐APTES/GOx/GC electrode showed a linear range of glucose from 0.02 to 4.340 mM with a LOD of 9 μM and sensitivity of 75.26 μA mM−1 cm−2. Also, the sensor and biosensor had notable selectivity, repeatability, reproducibility, and storage stability.  相似文献   

7.
A novel glucose biosensor was constructed via direct covalent attachment of glucose oxidase onto epoxy group containing polymeric electron transfer mediator, Poly(glycidyl methacrylate‐co‐vinylferrocene). A copolymer of glycidyl methacrylate (GMA) and vinylferrocene (VFc) with different molar ratios has been prepared by free radical copolymerization. These copolymers have been utilized as polymeric mediators for amperometric glucose sensing. The catalytic electrochemistry of the enzyme electrode with the copolymer was investigated. Copolymer acts as an electron transfer mediator between the redox center of Glucose oxidase (GOx) and the electrode. The stability, reusability, pH and temperature response of the biosensor as well as its kinetic parameter have also been studied.  相似文献   

8.
A novel amperometric glucose biosensor based on layer‐by‐layer (LbL) electrostatic adsorption of glucose oxidase (GOx) and dendrimer‐encapsulated Pt nanoparticles (Pt‐DENs) on multiwalled carbon nanotubes (CNTs) was described. Anionic GOx was immobilized on the negatively charged CNTs surface by alternatively assembling a cationic Pt‐DENs layer and an anionic GOx layer. Transmission electron microscopy images and ζ‐potentials proved the formation of layer‐by‐layer nanostructures on carboxyl‐functionalized CNTs. LbL technique provided a favorable microenvironment to keep the bioactivity of GOx and prevent enzyme molecule leakage. The excellent electrocatalytic activity of CNTs and Pt‐DENs toward H2O2 and special three‐dimensional structure of the enzyme electrode resulted in good characteristics such as a low detection limit of 2.5 μM, a wide linear range of 5 μM–0.65 mM, a short response time (within 5 s), and high sensitivity (30.64 μA mM?1 cm?2) and stability (80% remains after 30 days).  相似文献   

9.
3D macroporous TiO2 inverse opals have been derived from a sol‐gel procedure using polystyrene colloidal crystals as templates. EDS and SEM showed a face‐centered cubic (FCC) structure TiO2 inverse opal was obtained. Glucose oxidase (GOx) was successfully immobilized on the surface of indium‐tin oxide (ITO) electrode modified by TiO2 inverse opal (TiO2(IO)). Electrochemical properties of GOx/TiO2(IO)/ITO electrode were characterized by using the three electrodes system. The result of cyclic voltammetry showed that a couple of stable and well‐defined redox peaks for the direct electron transfer of GOx in absence of glucose, and the redox peak height enhanced in presence of 0.1 μM glucose. Compare with the ordinary structured GOx/TiO2/ITO electrode, inverse opal structured GOx/TiO2(IO)/ITO electrode has a better respond to the glucose concentration change. Under optimized experimental conditions of solution pH 6.8 and detection potential at 0.30 V versus saturated calomel electrode (SCE), amperometric measurements were performed. The sensitivity and the detection limit of glucose detection was 151 μA cm?2 mM?1 and 0.02 μM at a signal‐to‐noise ratio of 3, respectively. The good response was due to the good biocompatibility of TiO2 and the large effective surface of the three‐dimensionally ordered macroporous structure.  相似文献   

10.
In this study, a new method for modification of vertically aligned carbon nanotube arrays (VACNTs) for selective detection of glucose was developed. VACNTs were grown by chemical vapor deposition method on a silicon substrate deposited with alumina as a buffer layer and iron as a catalyst using radio frequency (RF) sputtering and electron beam evaporation, respectively. The surface of the electrode was modified with electrodeposition of polyaniline (PANI) followed by covalent attachment of glucose oxidase (GOx). The electrode was characterized using field emission scanning electron microscopy (FESEM), micro‐Raman spectroscopy, and attenuated total reflectance Fourier transform infrared spectrometer (ATR‐FTIR) techniques. Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of the electrode. The fabricated electrode was successfully employed as a point‐of‐care (POC) biosensor for the detection of glucose in human blood plasma. The detection limit was 1.1 μM, and the sensitivity was 620 μA mM?1 cm?2 at the linear range of 2–426 μM.  相似文献   

11.
In this study, a new glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on platinum nanoparticles (Pt NPs) decorated reduced graphene oxide (rGO)/Zn‐MOF‐74 hybrid nanomaterial. Herein, the biosensor fused the advantages of rGO with those of porous Zn‐MOF and conductive Pt NPs. This has not only enlarged the surface area and porosity for the efficient GOx immobilization and faster mass transport, but also provided favorable electrochemical features such as high current density, remarkable electron mobility through metal nanoparticles, and improved electron transfer between the components. The GOx‐rGO/Pt NPs@Zn‐MOF‐74 coated electrode displayed a linear measurement range for glucose from 0.006 to 6 mM, with a detection limit of 1.8 μM (S/N: 3) and sensitivity of 64.51 μA mM?1 cm?2. The amperometric response of the enzyme biosensor demonstrated the typical behavior of Michaelis‐Menten kinetics. The obtained satisfying sensitivity and measurement range enabled fast and accurate glucose measurement in cherry juice using the fabricated biosensor. The water‐stable Zn‐MOF‐74 demonstrated higher enzyme loading capacity and can be potent supporting material for biosensor construction.  相似文献   

12.
One of the major problems in amperometric biosensors based on detection of H2O2 produced by enzymatic reaction between oxidase enzymes and substrate is the interference of redox active compounds such as ascorbic acid (AA), dopamine (DA) and uric acid (UA). To minimize these interferences, sodium bismuthate was used for the first time as an insoluble pre‐oxidant in the flow injection (FI) amperometric glucose biosensor at a Glucose oxidase (GOx) immobilized Pt/Pd bimetallic modified pre‐anodized pencil graphite electrode (p.PGE). In this context, these interfering compounds were injected into a flow injection analysis (FIA) system using an injector which was filled with NaBiO3. Thus, these interferents were converted into their redox inactive oxidized forms before reaching the electrode in the flow cell. While glucose was not influenced by the pre‐oxidant in the injector, the huge oxidation peak currents of the interferents decreased significantly in the biosensor. FI amperometric current time curves showed that the AA, DA and UA were minimized by 96 %, 86 %, and 98 % respectively, in the presence of an equivalent concentration of interferences in a 1.0 mM glucose solution. The proposed FI amperometric glucose biosensor exhibits a wide linear range (0.01–10 mM, R2=0.9994) with a detection limit of 2.4×10?3 mM. Glucose levels in the artificial serum and two real samples were successfully determined using the fabricated FI amperometric biosensor.  相似文献   

13.
《Electroanalysis》2018,30(9):2044-2052
Acid functionalized multi‐walled carbon nanotubes (f‐MWCNTs) were decorated with Au and Fe2O3 nanoparticles (FeONPs) and deposited on glassy carbon electrode (GCE). The resulting hybrid Au/Fe2O3/f‐MWCNTs/GCE electrode and the one further modified by glucose oxidase were compared for detection of glucose. FeONPs and Au were deposited on the f‐MWCNTs by sonication‐assisted precipitation and deposition‐precipitation methods, respectively. The morphology and structure of the samples were characterized by transmission electron microscopy, scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. A uniform distribution of FeONPs with an average size of 5 nm increased the surface area of functionalized nanotubes from 39 to 50 m2/g. The electrocatalytic glucose detection on the modified electrodes was evaluated using cyclic voltammetry and chronoamperometry in 0.1 M phosphate buffer solution at pH 7.0. The non‐enzymatic and enzymatic electrodes show sensitivity of 512.4 and 921.4 mA/mM.cm2 and detection limit of 1.7 and 0.9 mM, respectively. The enzymatic and enzymeless electrodes retained more than 70 % and 80 % of their cathodic faradic current after 70 days, respectively. The sensing mechanism of the non‐enzymatic biosensor is described through the reaction of glucose with iron (III) ions, while in the case of enzymatic electrode, glucose is oxidized by glucose oxidase.  相似文献   

14.
通过将葡萄糖氧化酶固载于壳聚糖-纳米金复合膜内所构置的传感器,实现了葡萄糖氧化酶的直接电化学,并采用循环伏安法与电化学阻抗法对修饰电极进行了表征。研究表明:在除氧缓冲溶液中,葡萄糖氧化酶-壳聚糖-纳米金复合膜修饰电极表现出一对良好的氧化还原峰,这对峰归因于葡萄糖氧化酶的氧化还原,证明葡萄糖氧化酶被成功固载于复合膜内。电子传递速率常数为15.6 s-1,说明葡萄糖氧化酶的电活性中心与电极之间的电子传递很快。将壳聚糖与纳米金相结合还提高了葡萄糖氧化酶在复合膜内的稳定性并保持其生物活性,并可以用于葡萄糖检测。计算得到其表观米氏常数为10.1 mmol·L-1。而且,该生物传感器可以用于血样中葡萄糖含量的测定。  相似文献   

15.
An effective, stable enzymatic glucose biosensor was fabricated on a glassy carbon electrode (GCE) surface using simple multicomposite materials (MCM): a solution of prepared poly(diallyldimethylammonium chloride)‐capped gold nanoparticles‐nickel ferrite particles‐carbon nanotubes‐chitosan (PDDA‐AuNPs‐NiFe2O4‐CNTs‐CHIT), electropolymerization of poly(o‐phenylenediamine) (PoPD) and immobilization of glucose oxidase (GOx). Biocompatibility and synergy of the MCM enhanced the immobilization and the reaction of GOx and as well as the electron transfer from an oxidation reaction of hydrogen peroxide in the system. The NiFe2O4 was synthesized by co‐precipitation and calcined at 700 °C. Characterization was carried out by field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD) which presented both tetrahedral and octahedral metal stretching with a cubic NiFe2O4 crystal phase. The GOx/PoPD/MCM/GCE yielded a 0.77 s?1 charge transfer rate constant (Ks), a 2.28×10?6 cm2 s?1 diffusion coefficient value (D), a 0.21 mm2 electroactive surface area (Ae) and a 1.93×10?8 mol cm?2 surface concentration ( ) as determined by cyclic voltammetry. The modified electrode showed a durable operation time (n=97, more than 50 % I), repeatability (%RSD=0.38, n=10), reproducibility (%RSD=1.60, n=10), high sensitivity (853.07 μA mM?1 cm?2), selectivity without effects of electroactive species (aspirin, uric acid, caffeine, cholesterol, ascorbic acid and dopamine) and two linear ranges from 0.5 to 10 μM (R2=0.998) and 10 to 15,000 μM (R2=0.991) with a low detection limit (0.35 μM, S/N=3). Its Michaelis‐Menten constant (Km) was calculated as 93.51 μM with 46.30 μA maximum current (Imax). This proposed simple method was successfully applied for glucose determination in human blood samples.  相似文献   

16.
In this research a novel osmium complex was used as electrocatalyst for electroreduction of oxygen and H2O2 in physiological pH solutions. Electroless deposition at a short period of time (60 s), was used for strong and irreversible adsorption of 1,4,8,12‐tetraazacyclotetradecane osmium(III) chloride (Os(III)LCl2) ClO4 onto single‐walled carbon nanotubes (SWCNTs) modified GC electrode. The modified electrode shows a pair of well defined and reversible redox couple, Os(IV)/Os(III) at wide pH range (1–8). The glucose biosensor was fabricated by covering a thin film of glucose oxidase onto CNTs/Os‐complex modified electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The fabricated biosensor shows high sensitivity, 826.3 nA μM?1cm?2, low detection limit, 56 nM, fast response time <3 s and wide calibration range 1.0 μM–1.0 mM. The biosensor has been successfully applied to determination of glucose in human plasma. Because of relative low applied potential, the interference from electroactive existing species was minimized, which improved the selectivity of the biosensor. The apparent Michaelis‐Menten constant of GOx on the nanocomposite, 0.91 mM, exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this glucose biosensor.  相似文献   

17.
The negatively charged (at pH 8.2) glucose oxidase (GOx, pI ca. 4.2) was assembled onto the surface of single-walled carbon nanotubes (SWNT), which was covered (or wrapped) by a layer of positively charged polyelectrolyte poly(dimethyldiallylammonium chloride) (PDDA), via the electrostatic interaction forming GOx-PDDASWNT nanocomposites. Fourier transform infrared (FTIR), UV-Vis and electrochemical impedance spectroscopy (EIS) were used to characterize the growth processes of the nanocomposites. The results indicated that GOx retained its native secondary conformational structure after it was immobilized on the surface of PDDA-SWNT. A biosensor (Nafion-GOx-PDDA-SWNT/GC) was developed by immobilization of GOx-PDDA-SWNT nanocomposites on the surface of glassy carbon (GC) electrode using Nafion (5%) as a binder. The biosensor showed the electrocatalytic activity toward the oxidation of glucose under the presence of ferrocene monocarboxylic acid (FcM) as an electroactive mediator with a good stability, reproducibility and higher biological affinity. Under an optimal condition, the biosensor could be used to detection of glucose, presenting a typical characteristic of Michaelis-Menten kinetics with the apparent Michaelis-Menten constant of KM^app ca. 4.5 mmol/L, with a linear range of the concentration of glucose from 0.5 to 5.5 mmol/L (with correlation coefficient of 0.999) and the detection limit of ca. 83 μmol/L (at a signal-to-noise ratio of 3). Thus the biosensor was useful in sensing the glucose concentration in serum since the normal glucose concentration in blood serum was around 4.6 mmol/L. The facile procedure of immobilizing GOx used in present work would promote the developments of electrochemical research for enzymes (proteins), biosensors, biofuel cells and other bioelectrochemical devices.  相似文献   

18.
In this work, three types of electrodes suitable for amperometric glucose biosensors were designed. One type of electrode was based on bio‐selective layer of polypyrrole/(glucose oxidase)/(Prussian Blue) (Ppy/GOx/PB) and it was used as a control electrode regarding to which electrochemical properties of two other types of electrodes were compared. During the formation of Prussian blue layers graphite electrodes were additionally modified by Ni‐hexacyanoferrate (NiHCF) and by Co‐hexacyanoferrate (CoHCF) in order to design Ppy/GOx/PB‐NiHCF and Ppy/GOx/PB‐CoHCF electrodes, respectively. Some physicochemical characteristics of all three types of electrodes were evaluated and compared. The Ppy/GOx/PB‐NiHCF electrode showed wider linear range of the calibration curve than Ppy/GOx/PB and Ppy/GOx/PB‐CoHCF electrodes. The effect of temperature on analytical performance of the Ppy/GOx/PB‐NiHCF based biosensor has been evaluated and activation energy of enzyme catalysed reaction has been calculated within the temperature range of 15 °C to 30 °C.  相似文献   

19.
A novel glucose biosensor has been fabricated and employed as the amperometric detector of a capillary electrophoresis (CE) system. (±)-1-Ferrocenylethylamine and chitosan were successively modified on a 500-µm diameter disc platinum electrode by dip-coating. The modified electrode was subsequently immersed in glucose oxidase (GOx) solution to entrap the enzyme in the chitosan membrane. The primary amino groups of 1-ferrocenylethylamine, GOx, and chitosan were cross-linked by glutaraldehyde to obtain a biosensing membrane so as to reduce leaching of 1-ferrocenylethylamine and GOx. The electrochemical behavior of the target biosensor was investigated. It was demonstrated that the investigated biosensor features fast response, high stability, long lifetime, and ideal compatibility with the CE system. When CE was employed to introduce a glucose plug into the surface of the biosensor, the current response was linear to the glucose concentration in the range of 0.0025 to 2.5 mM with a detection limit of 1.2 µM (S/N = 3) at a working potential of +0.6 V (vs. SCE). The CE-biosensor system was applied to the determination of the glucose level in human serum. The results were satisfactory and in good agreement with the hospital assay results.  相似文献   

20.
Nail‐like carbon (NLC) was synthesized by a simple hydrothermal method. It was the first time that a novel electrochemical biosensing of glucose was explored based on the glucose oxidase (GOx)‐NLC‐chitosan (CHIT) glassy carbon electrode. Morphology and structure of NLC were characterized by scanning electron microscope; meanwhile the chemical composition was determined by X‐ray diffraction and energy dispersive X‐ray spectroscopy. The cyclic voltammetry of immobilized GOx showed a pair of quasireversible redox peaks with the formal potential (E°′) of ?0.458 V and the peak‐to‐peak potential separation was 47 mV at a scan rate of 100 mV s?1. The present biosensor has a linear range of glucose from 0.02 to 1.84 mM (correlation coefficient of 0.9991) and detection limit of 0.01 mM (S/N=3). Compared with the previous reports based on the carbon material biosensor, it has a high sensitivity of 165.5 μA mM?1 cm?2 and low apparent Michaelis–Menten constant of 0.506 mM. Thus, the NLC may have potential applications in the field of bioelectrochemistry, bioelectronics and biofuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号