首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate the relative stability of N—H...O and N—H...S hydrogen bonds, we cocrystallized the antithyroid drug 6‐propyl‐2‐thiouracil with two complementary heterocycles. In the cocrystal pyrimidin‐2‐amine–6‐propyl‐2‐thiouracil (1/2), C4H5N3·2C7H10N2OS, (I), the `base pair' is connected by one N—H...S and one N—H...N hydrogen bond. Homodimers of 6‐propyl‐2‐thiouracil linked by two N—H...S hydrogen bonds are observed in the cocrystal N‐(6‐acetamidopyridin‐2‐yl)acetamide–6‐propyl‐2‐thiouracil (1/2), C9H11N3O2·2C7H10N2OS, (II). The crystal structure of 6‐propyl‐2‐thiouracil itself, C7H10N2OS, (III), is stabilized by pairwise N—H...O and N—H...S hydrogen bonds. In all three structures, N—H...S hydrogen bonds occur only within R22(8) patterns, whereas N—H...O hydrogen bonds tend to connect the homo‐ and heterodimers into extended networks. In agreement with related structures, the hydrogen‐bonding capability of C=O and C=S groups seems to be comparable.  相似文献   

2.
Pentazole Derivates and Azides Formed from them: Potassium‐Crown‐Ether Salts of [O3S—p‐C6H4—N5] and [O3S—p‐C6H4—N3] O3S—p‐C6H4—N2+ was reacted with sodium azide at —50 °C in methanol, yielding a mixture of 4‐pentazolylbenzenesulfonate and 4‐azidobenzenesulfonate (amount‐of‐substance ratio 27:73 according to NMR). By addition of KOH in methanol at —50 °C a mixture of the potassium salts K[O3S—p‐C6H4—N5] and K[O3S—p‐C6H4—N3] was precipitated (ratio 60:40). A solution of this mixture along with 18‐crown‐6 in tetrahydrofurane yielded the crystalline pentazole derivate [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N5]·THF by addition of petrol ether at —70 °C. From the same solution upon evaporation and redissolution in THF/petrol ether the crystalline azide [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N3]·THF was obtained. A solution of the latter in chloroform/toluene under air yielded [K‐18‐crown‐6][O3S—p‐C6H4—N3]·1/3H2O. According to their X‐ray crystal structure determinations [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N5]·THF and [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N3]·THF have the same kind of crystal packing. Differences worth mentioning exist only for the atomic positions of the pentazole ring as compared to the azido group and for one THF molecule which is coordinated to the potassium ion; different orientations of the THF molecule take account for the different space requirements of the N5 and the N3 group. In [K‐18‐crown‐6][O3S—p‐C6H4—N3]·1/3H2O there exists one unit consisting of one [K‐18‐crown‐6]+ and one [O3S‐C6H4—N3] ion and another unit consisting of two [O3S‐C6H4—N3] ions joined via two [K‐18‐crown‐6]+ ions and one water molecule. The rate constants for the decomposition [O3S‐C6H4—N5] → [O3S‐C6H4—N3] + N2 in methanol were determined at 0 °C and —20 °C.  相似文献   

3.
Molecules of (S)‐6‐oxo‐1‐(thiophen‐2‐ylmethyl)piperidine‐2‐carboxylic acid, C11H13NO3S, crystallize as single enantiomers in the space group P21 and the thiophene ring is disordered over two positions, while (S)‐6‐oxo‐1‐(thiophen‐3‐ylmethyl)piperidine‐2‐carboxylic acid, C11H13NO3S, crystallizes as a single enantiomer in the space group P212121. Their absolute configurations were confirmed by anomalous dispersion effects in diffraction measurements on the crystals. The molecules of each compound are linked by a combination of strong O—H...O hydrogen bonds and weak C—H...O interactions, resulting in two‐ and three‐dimensional networks, respectively, in the crystal structures.  相似文献   

4.
The title compound, C15H16N2O, crystallizes in the space group P212121 with Z′ = 1. The seven‐membered ring adopts a chair‐type conformation with the hydroxy and pyridyl substituents in equatorial sites. Molecules are linked into a three‐dimensional framework structure by a combination of O—H...N, C—H...O and C—H...π(arene) hydrogen bonds, but N—H...O and N—H...π(arene) interactions are absent from the structure. Comparisons are made with some related compounds.  相似文献   

5.
The three pyran structures 6‐methylamino‐5‐nitro‐2,4‐diphenyl‐4H‐pyran‐3‐carbonitrile, C19H15N3O3, (I), 4‐(3‐fluorophenyl)‐6‐methylamino‐5‐nitro‐2‐phenyl‐4H‐pyran‐3‐carbonitrile, C19H14FN3O3, (II), and 4‐(4‐chlorophenyl)‐6‐methylamino‐5‐nitro‐2‐phenyl‐4H‐pyran‐3‐carbonitrile, C19H14ClN3O3, (III), differ in the nature of the aryl group at the 4‐position. The heterocyclic ring in all three structures adopts a flattened boat conformation. The dihedral angle between the pseudo‐axial phenyl substituent and the flat part of the pyran ring is 89.97 (1)° in (I), 80.11 (1)° in (II) and 87.77 (1)° in (III). In all three crystal structures, a strong intramolecular N—H...O hydrogen bond links the flat conjugated H—N—C=C—N—O fragment into a six‐membered ring. In (II), molecules are linked into dimeric aggregates by N—H... O(nitro) hydrogen bonds, generating an R22(12) graph‐set motif. In (III), intermolecular N—H...N and C—H...N hydrogen bonds link the molecules into a linear chain pattern generating C(8) and C(9) graph‐set motifs, respectively.  相似文献   

6.
The asymmetric unit of the title compound, C10H8O2, contains two practically planar symmetry‐independent molecules linked by one O—H...O hydrogen bond. Molecules are further linked into a three‐dimensional network, which is built from R66(36), R66(18), R66(30) and R44(26) rings formed by the combined effect of three O—H...O and one C—H...O hydrogen bond. This network is additionally stabilized by an O—H...π interaction.  相似文献   

7.
A new, easy and rapid synthesis of γ‐dilactones is cis‐fused with a cyclopentenic ring via cyclization of 7‐chlorotriethylenic‐malonic acids. The key step implicates an intramolecular cyclization to a cyclopentenyl cation, according to an electrocyclic π2s + π2a conrotatory process. This cyclopentenyl cation led to unstable γ‐lactones intermediates that are rearrange to more stable isomers. δ‐lactones (6Z and 6E‐(3‐chlorobut‐2‐en‐2‐yl)‐5‐methyl‐3,6‐dihydro‐2H‐pyran‐2‐one) were obtained as secondary products. Mechanistic pathways were considered. The structures of the newly synthesized compounds were established by elemental and spectral data.  相似文献   

8.
The title salts, 4‐chloroanilinium hydrogen phthalate (PCAHP), C6H7ClN+·C8H5O4, 2‐hydroxyanilinium hydrogen phthalate (2HAHP), C6H8NO+·C8H5O4, and 3‐hydroxyanilinium hydrogen phthalate (3HAHP), C6H8NO+·C8H5O4, all crystallize in the space group P21/c. The asymmetric unit of 2HAHP contains two independent ion pairs. The hydrogen phthalate ions of 2HAHP and 3HAHP show a short intramolecular O—H...O hydrogen bond, with O...O distances ranging from 2.3832 (15) to 2.3860 (14) Å. N—H...O and O—H...O hydrogen bonds, together with short C—H...O contacts in PCAHP and 3HAHP, generate extended hydrogen‐bond networks. PCAHP forms a two‐dimensional supramolecular sheet extending in the (100) plane, whereas 2HAHP has a supramolecular chain running parallel to the [100] direction and 3HAHP has a two‐dimensional network extending parallel to the (001) plane.  相似文献   

9.
Molecules of the title compound [systematic name: (5‐amino‐3‐methylpyrazol‐1‐yl)(phenyl)methanone], C11H11N3O, contain an intramolecular hydrogen bond. The molecules are linked into sheets by a combination of N—H...N, C—H...O and C—H...π(arene) hydrogen bonds. Comparisons are made with the hydrogen‐bonded structures of some related compounds.  相似文献   

10.
In order to study the preferred hydrogen‐bonding pattern of 6‐amino‐2‐thiouracil, C4H5N3OS, (I), crystallization experiments yielded five different pseudopolymorphs of (I), namely the dimethylformamide disolvate, C4H5N3OS·2C3H7NO, (Ia), the dimethylacetamide monosolvate, C4H5N3OS·C4H9NO, (Ib), the dimethylacetamide sesquisolvate, C4H5N3OS·1.5C4H9NO, (Ic), and two different 1‐methylpyrrolidin‐2‐one sesquisolvates, C4H5N3OS·1.5C5H9NO, (Id) and (Ie). All structures contain R21(6) N—H...O hydrogen‐bond motifs. In the latter four structures, additional R22(8) N—H...O hydrogen‐bond motifs are present stabilizing homodimers of (I). No type of hydrogen bond other than N—H...O is observed. According to a search of the Cambridge Structural Database, most 2‐thiouracil derivatives form homodimers stabilized by an R22(8) hydrogen‐bonding pattern, with (i) only N—H...O, (ii) only N—H...S or (iii) alternating pairs of N—H...O and N—H...S hydrogen bonds.  相似文献   

11.
In the three spiroacenaphthylene structures 5′′‐[(E)‐2,3‐dichlorobenzylidene]‐7′‐(2,3‐dichlorophenyl)‐1′′‐methyldispiro[acenaphthylene‐1,5′‐pyrrolo[1,2‐c][1,3]thiazole‐6′,3′′‐piperidine]‐2,4′′‐dione, C35H26Cl4N2O2S, (I), 5′′‐[(E)‐4‐fluorobenzylidene]‐7′‐(4‐fluorophenyl)‐1′′‐methyldispiro[acenaphthylene‐1,5′‐pyrrolo[1,2‐c][1,3]thiazole‐6′,3′′‐piperidine]‐2,4′′‐dione, C35H28F2N2O2S, (II), and 5′′‐[(E)‐4‐bromobenzylidene]‐7′‐(4‐bromophenyl)‐1′′‐methyldispiro[acenaphthylene‐1,5′‐pyrrolo[1,2‐c][1,3]thiazole‐6′,3′′‐piperidine]‐2,4′′‐dione, C35H28Br2N2O2S, (III), the substituted aryl groups are 2,3‐dichloro‐, 4‐fluoro‐ and 4‐bromophenyl, respectively. The six‐membered piperidine ring in all three structures adopts a half‐chair conformation, the thiazolidine ring adopts a slightly twisted envelope and the pyrrolidine ring an envelope conformation; in each case, the C atom linking the rings is the flap atom. In all three structures, weak intramolecular C—H...O interactions are present. The crystal packing is stabilized through a number of intermolecular C—H...O and C—H...X interactions, where X = Cl in (I) and F or S in (II), and C—H...O interactions are observed predominantly in (III). In all three structures, molecules are linked through centrosymmetric ring motifs, further tailored through a relay of C—H...X [Cl in (I), Br in (II) and O in (III)] interactions.  相似文献   

12.
In the title compound, C29H35ClN4O2, the bond lengths provide evidence for aromatic delocalization in the pyrazole ring but bond fixation in the fused imidazole ring, and the octyl chain is folded, rather than adopting an all‐trans chain‐extended conformation. A combination of N—H...N, C—H...N and C—H...O hydrogen bonds links the molecules into sheets, in which the hydrogen bonds occupy the central layer with the tert‐butyl and octyl groups arranged on either side, such that the closest contacts between adjacent sheets involve only the octyl groups. Comparisons are made with the supramolecular assembly in some simpler analogues.  相似文献   

13.
In N,N,N′,N′‐tetrakis(2‐pyridylmethyl)propane‐1,3‐diamine, C27H30N6, (I), and N,N,N′,N′‐tetrakis(2‐pyridylmethyl)butane‐1,4‐diamine, C28H32N6, (II), the twofold rotational symmetry of (I) favours the formation of a one‐dimensional hydrogen‐bonded polymer with two columns of C—H...N hydrogen bonds, while the inversion symmetry of (II) allows the formation of a one‐dimensional hydrogen‐bonded polymer stabilized by four columns of C—H...N hydrogen bonds. The possible role played by the chain length of the linking alkanediamine in determining the type of supramolecular architecture in this series of compounds is discussed.  相似文献   

14.
[Pd(Cl)2{P(NC5H10)(C6H11)2}2] ( 1 ) has been prepared in quantitative yield by reacting commercially available [Pd(cod)(Cl)2] (cod=cyclooctadiene) with readily prepared 1‐(dicyclohexylphosphanyl)piperidine in toluene under N2 within a few minutes at room temperature. Complex 1 has proved to be an excellent Negishi catalyst, capable of quantitatively coupling a wide variety of electronically activated, non‐activated, deactivated, sterically hindered, heterocyclic, and functionalized aryl bromides with various (also heterocyclic) arylzinc reagents, typically within a few minutes at 100 °C in the presence of just 0.01 mol % of catalyst. Aryl bromides containing nitro, nitrile, ether, ester, hydroxy, carbonyl, and carboxyl groups, as well as acetals, lactones, amides, anilines, alkenes, carboxylic acids, acetic acids, and pyridines and pyrimidines, have been successfully used as coupling partners. Furthermore, electronic and steric variations are tolerated in both reaction partners. Experimental observations strongly indicate that a molecular mechanism is operative.  相似文献   

15.
In the title compound, C16H14FN3O2, a diverse set of weak intermolecular C—H...π, π–π and C—H...O interactions link the molecules into sheets. The C—H...O interactions generate centrosymmetric rings with a graph‐set motif of R22(14) and chains with a C(8) motif.  相似文献   

16.
The title compound, C20H17N3, is a derivative of 1,3,5‐triaryl‐2‐pyrazoline and can act as an N,N′‐bidentate ligand. This molecule features strong fluorescence that can be explained by an extended pyridyl–C=N—N–phenyl system. The three‐dimensional structure is formed by means of an extended network of weak C—H...π hydrogen bonds supported by π–π interactions.  相似文献   

17.
The chemical synthesis of deuterated isomeric 6,7‐dihydroxydodecanoic acid methyl esters 1 and the subsequent metabolism of esters 1 and the corresponding acids 1a in liquid cultures of the yeast Saccharomyces cerevisiae was investigated. Incubation experiments with (6R,7R)‐ or (6S,7S)‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid methyl ester ((6R,7R)‐ or (6S,7S)‐(6,7‐2H2)‐ 1 , resp.) and (±)‐threo‐ or (±)‐erythro‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid ((±)‐threo‐ or (±)‐erythro‐(6,7‐2H2)‐ 1a , resp.) elucidated their metabolic pathway in yeast (Tables 1–3). The main products were isomeric 2H‐labeled 5‐hydroxydecano‐4‐lactones 2 . The absolute configuration of the four isomeric lactones 2 was assigned by chemical synthesis via Sharpless asymmetric dihydroxylation and chiral gas chromatography (Lipodex ® E). The enantiomers of threo‐ 2 were separated without derivatization on Lipodex ® E; in contrast, the enantiomers of erythro‐ 2 could be separated only after transformation to their 5‐O‐(trifluoroacetyl) derivatives. Biotransformation of the methyl ester (6R,7R)‐(6,7‐2H2)‐ 1 led to (4R,5R)‐ and (4S,5R)‐(2,5‐2H2)‐ 2 (ratio ca. 4 : 1; Table 2). Estimation of the label content and position of (4S,5R)‐(2,5‐2H2)‐ 2 showed 95% label at C(5), 68% label at C(2), and no 2H at C(4) (Table 2). Therefore, oxidation and subsequent reduction with inversion at C(4) of 4,5‐dihydroxydecanoic acid and transfer of 2H from C(4) to C(2) is postulated. The 5‐hydroxydecano‐4‐lactones 2 are of biochemical importance: during the fermentation of Streptomyces griseus, (4S,5R)‐ 2 , known as L‐factor, occurs temporarily before the antibiotic production, and (?)‐muricatacin (=(4R,5R)‐5‐hydroxy‐heptadecano‐4‐lactone), a homologue of (4R,5R)‐ 2 , is an anticancer agent.  相似文献   

18.
The title compound, C25H22O3P2·C6H6O, has a zwitterionic betaine‐like structure and crystallizes as a phenol solvate. The two molecular components are held together by an almost linear intermolecular O—H...O hydrogen bond. The structure also contains three weak C—H...O and two C—H...π(arene) interactions.  相似文献   

19.
The intramolecular dimensions of the title compound, C14H12N2O, provide evidence for a polarized electronic structure. The molecule, which is almost completely planar, contains an intramolecular N—H...O hydrogen bond, and the molecules are linked by a combination of N—H...N, C—H...O and C—H...π(arene) hydrogen bonds to form a three‐dimensional framework structure.  相似文献   

20.
In the title compound, 4‐iodoanilinium 2‐carboxy‐6‐nitrobenzoate, C6H7IN+·C8H4NO6, the anions are linked by an O—H...O hydrogen bond [H...O = 1.78 Å, O...O = 2.614 (3) Å and O—H...O = 171°] into C(7) chains, and these chains are linked by two two‐centre N—H...O hydrogen bonds [H...O = 1.86 and 1.92 Å, N...O = 2.700 (3) and 2.786 (3) Å, and N—H...O = 153 and 158°] and one three‐centre N—H...(O)2 hydrogen bond [H...O = 2.02 and 2.41 Å, N...O = 2.896 (3) and 2.789 (3) Å, N—H...O = 162 and 105°, and O...H...O = 92°], thus forming sheets con­taining R(6), R(8), R(13) and R(18) rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号