首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《中国化学会会志》2018,65(9):1021-1021
In this paper , tyrosinase‐immobilized magnetic nanoparticles (TRY‐MNPs) and 96 well homemade magnetic microplate are used for quickly screening tyrosinase inhibitors. True inhibitors are identified, without interference from antioxidants. Whether the inhibitor is a copper ion chelator or a specific enzyme binder can be identified by adding Cu2+ to restore the activity of TRY‐MNPs. More details will be discussed by Dr. Hweiyan Tsai and her co‐workers on page 1075–1081 in this issue.

  相似文献   


2.
Tyrosinase was immobilized on Chitosan (CTS) beads to produce 3,4‐dihydroxy‐L‐phenylalanine (L ‐DOPA) from L ‐tyrosine. Epichlorohydrin (ECH), ethylene glycol diglycidyl ether (EGDE), and glutaraldehyde (GLU) were used as coupling agents, respectively. Ultraviolet/visible measurements on CTS films showed that the reaction intermediate (L ‐dopaquinone) attacked the amino groups on CTS, so the amine residues on chitosan were capped by acetic acid anhydride (Ac) or formaldehyde (Fm) to avoid the deactivation of the immobilized tyrosinase. The pH and temperature of the maximal rate to produce L‐DOPA were investigated. GLU (coupling agent) and Ac (capping agent) were selected for practical utility. A 7.5% (w/v) concentration of GLU was found to attain maximal activity of the immobilized enzyme. The thermal stability of tyrosinase immobilized on CTS‐GLU‐Ac, and after treatment with sodium borohydride, was enhanced to a great extent. The L ‐DOPA converting efficiency in the environmental conditions of this study decreased from 45.1% to 39.9% (between 1st and 30th batch). This immobilized tyrosinase can be used practically in the production of L‐DOPA from L‐tyrosine.  相似文献   

3.
This paper describes the applications of multifunctional magnetic nanoparticles (MNPs) for the enrichment of low‐abundance proteins for polyacrylamide gel electrophoresis (PAGE) separation. The hemoglobin‐functionalized MNPs, named Hb–MNPs, were obtained based on electrostatic interactions and covalent binding between the hemoglobin (Hb) and the MNPs. It was demonstrated that the proteins in human serum were selectively conjugated to Hb‐MNPs, which can be used for the selective enrichment of low‐abundance proteins. Three and seven kinds of proteins were identified by MS after 1‐D and 2‐D PAGE, respectively. Comparing with native PAGE without the treatment of MNPs, some proteins were observed, such as human serum amyloid P component (SAP), vitamin D‐binding protein, and serine peptidase inhibitor. Because the high concentration of SAP can be considered as a signal for the neurodegeneration of Alzheimer's disease, the present Hb‐MNPs‐based method was applied to investigate the serum level of SAP for the diagnosis of Alzheimer's disease, and the results are satisfying.  相似文献   

4.
Anisotropic Janus magnetic polymeric nanoparticles are prepared via the miniemulsion polymerization of styrene and acrylic acid monomers in the presence of oleic acid‐coated magnetic nanoparticles (MNPs). The controllable phase separation between the polymer matrix and the encapsulated MNPs is a key success factor to produce Janus morphology. The effects of MNPs, 2,2′‐azobis(2‐isobutyronitrile) and sodium dodecyl sulfate contents, on the morphology, chemical composition and colloidal stability of the prepared Janus hybrid particles are investigated. Besides the determination of polymerization conversion, zeta potential, size analysis, TGA, and TEM are applied for characterization of the anisotropic particles. The results show the stable spherical Janus particles containing MNPs (15 wt % magnetic content) located on one side of each polymer particle. The anisotropic submicron Janus magnetic polymeric particles (250 nm) can be easily separated by an external magnet. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4779–4785  相似文献   

5.
l ‐Proline has been successfully anchored on the surface of magnetic nanoparticles and characterized using powder X‐ray diffraction, scanning electron microscopy, vibrating sample magnetometry and Fourier transform infrared spectroscopy. These nanoparticles as a chiral catalyst have been employed to promote the direct asymmetric Mannich reaction. The corresponding products are obtained in high yields with high level of diastereoselectivity (up to 99:1 dr) in the presence of Fe3O4– l ‐proline. Also this heterogeneous catalyst can be recovered easily and reused many times without significant loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We report the first use of iron oxide magnetic nanoparticles (Fe3O4 MNPs) as a novel, alternative, simple and reliable agents for colorimetric measurement of radical scavenging activity of the antioxidants. In the presence of H2O2 and the peroxidase colorimetric substrate, Fe3O4 MNPs catalyzed the oxidation of colorless peroxidase substrate to form colorimetric products via the generation of hydroxyl radicals. After adding antioxidants, the catalytic activity of Fe3O4 MNPs was inhibited due to scavenging of hydroxyl radicals by the antioxidants, producing less colorimetric products resulting in the reduction of color intensity. Two model antioxidant standards including gallic acid (GA) and epigallocatechin gallate (EGCG) were successfully evaluated for their hydroxyl radical scavenging activity using the developed assay. The performance of the developed method was validated against traditional antioxidant assays for 9 tea samples. Using the Spearman rank correlation coefficient method, the antioxidant activity of tea samples obtained from the Fe3O4 MNP assay correlated well with the traditional assays at the 95% confidence level. Furthermore, the developed assay was successfully carried out on a paper-based device to provide for high throughput analysis with low amounts of reagents and sample consumption and low analysis cost for screening of radical scavenging activity of the antioxidants. The results from the analysis of antioxidant activity in tea samples obtained from the Fe3O4 MNP paper-based assay were not significantly different to those obtained from the developed Fe3O4 MNP spectrophotometric assay indicating that the developed assay was also applicable in a low-cost analysis platform.  相似文献   

7.
Hollow magnetic nanoparticles (MNPs) with tetrahedral morphology were synthesized and then covered by a shell prepared by coating with melamine–formaldehyde followed by the introduction of glucose‐derived carbon. Subsequently, Pd nanoparticles were immobilized and the core–shell nanocomposite was carbonized. The obtained magnetic catalyst was successfully applied for the hydrogenation of nitroarenes in aqueous media. To investigate the effects of the morphology of MNPs, the nature of carbon shell, and the order of incorporation of Pd nanoparticles, several control catalysts, including the MNPs with different morphologies (disc‐like and cylinder); MNPs coated with different shells (sole glucose‐derived carbon or melamine–formaldehyde carbon shell); and a nanocomposite, in which Pd was immobilized after carbonization, were prepared and examined as catalyst for the model reaction. To justify the observed different catalytic activities of the catalysts, their Pd loadings, leaching, and specific surface areas were compared. The results confirmed that tetrahedral MNPs coated with porous N‐rich carbon shell exhibited the best catalytic activity. The high catalytic activity of this catalyst was attributed to its high surface area and the interaction of N‐rich shell with Pd nanoparticles that led to the higher Pd loading and suppressed Pd leaching.  相似文献   

8.
We report here an affinity separation-based fluorometric method for monitoring the activity and inhibition of protein kinase. In this assay, when the fluorescein isothiocyanate (FITC) labeled substrate peptides (S-peptide) are phosphorylated by kinase, the product peptides (P-peptide) will be adsorbed and concentrated onto the surface of Zr4+-immobilized nitrilotriacetic acid-coated magnetic nanoparticles (Zr-NTA MNPs) through the chelation of Zr4+ and phosphate groups. After magnetic separation, the fluorescence intensity of the homogeneous solution changes dramatically. Hence the fluorescence response allows this MNPs-based method to easily probe kinase activity by a spectrometer. The feasibility of the method has been demonstrated by sensitive measurement of the activity of cAMP-dependent protein kinase (PKA) with a low detection limit (0.5 mU μL−1). Moreover, the system is successfully applied to estimate the IC50 value of PKA inhibitor H-89 and detect the Forskolin/3-isobutyl-1-methylxanthine (IBMX) stimulated activation of PKA in cell lysate. Additionally, Zr-NTA MNPs are reusable by stripping Zr4+ ions from NTA-coated MNPs and rechelating again. This method, which relies on the surface-functionalized MNPs, presents a promising candidate for simple and cost-effective assay of kinase activity and inhibitor screening.  相似文献   

9.
Here, novel methods to encapsulate magnetic nanoparticles (MNPs) into dual‐stimuli‐responsive nanogels via covalent bonding are reported. With the aim of strengthening the attachment of MNPs with the nanogels, primary amine‐ and epoxide‐functionalized stimuli‐sensitive poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA)‐based nanogels were firstly synthesized. Then, MNPs were incorporated into the nanogels by using different methods, obtaining different families of magnetic nanogels (MNGs). Those MNGs, showing pH‐sensitivity and high superparamagnetic response, could be considered to be widely useful as theranostic agents in biomedical applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3573–3586  相似文献   

10.
Magnetically recoverable and environmentally friendly Cu‐based heterogeneous catalyst has been synthesized for the one‐pot conversion of aldehydes to their corresponding primary amides. The Fe3O4@SiO2 nanocomposites were prepared by synthesis of Fe3O4 magnetic nanoparticles (MNPs) which was then coated with a silica shell via Stöber method. Bi‐functional cysteine amino acid was covalently bonded onto the siliceous shell of nanocatalyst. The CuII ions were then loaded onto the modified surface of nanocatalyst. Finally, uniformly dispersed copper nanoparticles were achieved by reduction of CuII ions with NaBH4. Amidation reaction of aryl halides with electron‐withdrawing or electron‐donating groups and hydroxylamine hydrochloride catalyzed with Fe3O4@SiO2@Cysteine‐copper (FSC‐Cu) MNPs in aqueous condition gave an excellent yield of products. The FSC‐Cu MNPs could be easily isolated from the reaction mixture with an external magnet and reused at least 8 times without significant loss in activity.  相似文献   

11.
Sulfamic acid immobilized on amino‐functionalized magnetic nanoparticles (MNPs/DETA‐SA) was successfully fabricated and characterized using various techniques. Diameters of approximately 15 nm for the MNPs/DETA‐SA were observed from scanning electron microscopy images. The as‐fabricated nanocomposite was applied as an efficient and magnetically reusable catalyst for the synthesis of 2,3‐dihydroquinazoline‐4(1H)‐one and polyhydroquinoline derivatives. All products were obtained in good to excellent yields. Recovery tests confirm that the catalyst can be readily recovered using an external magnet and reused many times without significant loss of its catalytic activity.  相似文献   

12.
A new method is applied to prepare stable aqueous dispersion of magnetic iron oxide nanoparticles (MNPs) by biocompatible maleate polymers. Fe3O4 magnetic core–shell nanoparticles are obtained via forming an inclusion complex between carboxylic acid groups of maleated biocompatible polymers shell and Fe3O4 MNPs core surface. Maleate polymers are synthesized via esterification of poly(ethylene glycol), poly(vinyl alcohol) and starch with maleic anhydride (MA). The Fe3O4 magnetic core–shell nanoparticles are characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The obtained magnetic core–shell nanoparticles exhibit superparamagnetic property and reveal long‐term aqueous stability. This work represents a valid methodology to produce highly stable aqueous dispersion of Fe3O4 MNPs ferrofluids which can be expected to have great potential as contrast agent for magnetic resonance imaging. Furthermore, the shell composition of biocompatible maleate polymers with double bond of MA as crosslinker agent allows the polymerization with other monomers to design preferred drug delivery systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, we have synthesized a polycation and a polyanion via a combination of oxyanion‐initiated polymerization and polymer reaction, and then developed a novel approach to prepare a controlled magnetic target gene carrier with magnetic Fe3O4 nanoparticles as core and poly(ethylene glycol) (PEG) segment as corona via layer‐by‐layer (LbL) assembly and shell‐crosslinking. Magnetic nanoparticles (MNPs) were first modified by poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) via radical polymerization. The resulting MNPs were used to compact deoxyribonucleic acid (DNA) through LbL assembly, involving four steps: ( 1 ) the binding of DNA to the polycation PDMAEMA on the surface of MNPs; ( 2 ) the produced particles in Step 1 with negative charge interacting with additional polycation ethoxy group end‐capped PDMAEMA (EtO‐PDMAEMA) homopolymer, leading to a positive charge surface; ( 3 ) using carboxyl group (‐COO) of poly(methacrylic acid) (PMAA) in a diblock copolymer (MePEG2000‐b‐PMAASH) as polyanion, which has partial mercapto groups (‐SH) in PMAA segment, to interact with the particles produced in Step 2; ( 4 ) the shell of the composite nanoparticle was crosslinked by oxidizing the ‐SH groups of the MePEG2000‐b‐PMAASH to form disulfide linkage (S? S). All the processes of LbL assembly were investigated by agarose gel retardation assay and zeta potential measurements. The in vitro cytotoxicity analysis proves that polyions/DNA MNPs have excellent properties and potential applications as gene carriers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
脂肪酶是一种三酰基甘油水解酶,目前广泛用于油脂化学、食品、有机合成和生物医药等领域.但是,游离脂肪酶在有机反应体系中容易失活,难以从反应体系中回收,导致其循环利用困难和生产成本增加.因此,需要对游离脂肪酶进行固定化,提高酶的稳定性和重复使用性,使其能够大规模用于工业生产.
  磁性四氧化三铁纳米粒子(MNPs)具有其超顺磁性和大比表面积等性质,但MNPs需表面修饰才能进一步应用.近年来,仿生矿化法制备的聚多巴胺纳米材料受到人们关注.在仿生矿化过程中,单体多巴胺经自聚合作用后形成聚多巴胺,该反应活性高,能对各类有机和无机纳米材料进行表面修饰.而且,聚多巴胺表层中的活性基团能与含有氨基和巯基的生物大分子发生迈克尔加成或席夫碱反应,从而将生物大分子固定在材料表面.
  本文利用聚多巴胺表面修饰MNPs,对所得聚多巴胺表面修饰的四氧化三铁纳米粒子(PD-MNPs)进行了结构表征.结果表明, PD-MNPs尺寸在14 nm左右.同时,成功将黑曲霉脂肪酶(ANL)固定在PD-MNPs上,结果显示在pH=8、固定化时间为12 h条件下,酶负载量为138 mg/g,酶活回收率达到83.6%,而且固定化酶的pH稳定性及热稳定性、储藏稳定性都优于游离酶.动力学研究表明,固定化酶Km值(63.2 mmol/L)低于游离酶(74.5 mmol/L),固定化酶的底物亲和性增强.进一步研究了固定化酶和游离酶在乙腈、二甲基亚砜、乙醇和[HMIm]BF4这四种溶剂中的溶剂耐受性,结果显示固定化酶的耐受性均强于游离酶.采用红外光谱对游离酶和固定化酶二级结构的分析表明,游离黑曲霉脂肪酶经固定化后,α-螺旋和β-折叠含量分别增加了0.84%和2.74%,使得固定化后α-螺旋和β-折叠中存在的氢键能够更好地保持酶结构刚性,避免因结构改变而引起酶失活,增强了固定化酶在溶剂中的耐受性.
  二氢杨梅素是一种具有类黄酮结构的天然产物,具有抗氧化、抗菌、抗肿瘤和保护肝脏等作用,但其脂溶性很差,很难透过细胞膜被人体吸收.本课题组曾首次以乙酸乙烯酯为酰基供体,采用游离脂肪酶生物催化方法成功将二氢杨梅素酰化.本文考察了PD-MNPs固定化脂肪酶在二氢杨梅素酰化反应中的应用.结果表明,与游离酶相比,固定化酶在反应介质二甲基亚砜中的耐受性更强,反应48 h后其催化二氢杨梅素酰化的转化率接近80%,明显好于游离酶(69%).固定化酶催化二氢杨梅素酰化的最适底物摩尔比、温度和酶量分别为10:1(乙酸乙烯酯:二氢杨梅素)、45oC,和40 U.此外,固定化酶在外界磁场作用下能迅速从反应混合物中分离,从而可回收利用,在重复使用10次后,其活性仍保持在初始活性的55%以上,具有良好的工业应用前景.  相似文献   

15.
《中国化学会会志》2017,64(8):986-992
Although a variety of chemosensors as probes have been exploited for the detection of metal ions with high sensitivity and selectivity, the formed probe–metal complex was hardly suitable for separation, removal, and further recovery. This paper presents a method to detect and remove metal ions from aqueous solutions simultaneously by a fluorescence chemosensor and functional magnetic nanoparticles. A novel probe SRhB ‐Azo was synthesized based on rhodamine B (RhB ), maleic anhydride (MAH ), and azobenzene (Azo). SRhB ‐Azo showed high selectivity and sensitivity to Hg ions in aqueous solutions. Job's experiment showed the formation of a 1:2 stoichiometry complex between Hg2+ and SRhB ‐Azo. Moreover, β‐cyclodextrin (β‐CD )‐modified magnetic nanoparticles (CD‐MNPs ) were fabricated and used as host materials to form the inclusion complex CD–MNP and SRhB ‐Azo–Hg2+. Then, the SRhB ‐Azo‐Hg2+ complex could be removed by an external magnet, and subsequently recovered by UV ‐irradiation‐induced trans/cis isomerization of the Azo groups. The CD‐MNP s could be reused for nearly four times. Thus, the SRhB ‐Azo probe and CD‐MNP system has great potential application in sewage treatment.  相似文献   

16.
Thiourea dioxide was immobilized on γ‐Fe2O3@Cu3Al‐LDH magnetic nanoparticles to prepare the γ‐Fe2O3@Cu3Al‐LDH‐TUD MNPs. The structure and properties of these magnetic nanoparticles were established by FT‐IR, EDX, SEM, XRD, and hystogram of particle size analytical methods. The results obtained from these analytical methods confirmed the successful immobilization of the thiourea dioxide onto the magnetic support. The synthesized magnetic nanoparticles (MNPs) exhibited high catalytic activity in one‐pot three‐component reactions under mild and solvent‐free conditions for the synthesis of diverse ranges of dihydropyrano[3,2‐c]pyrazoles and dihydropyrano[3,2‐c]chromens. All the reactions proceeded smoothly to furnish the respective products in excellent yields. Simple isolation of the products, avoidance of harmful organic solvents, versatility of the catalyst and its easy magnetic separation and reusability with no significant loss of activity are the main advantages of the present method.  相似文献   

17.
Valonea tannin is a natural product readily extracted from acorn shells that has been suggested to have potential skin whitening properties. This study investigated the tyrosinase inhibition activity of extracted valonea tannin and the associated structure–function activity. Nuclear magnetic resonance spectroscopy and molecular weight analysis with gel permeation chromatography revealed that valonea tannin could be characterized as a hydrolysable tannin with galloyl, hexahydroxydiphenoyl and open formed-glucose moieties and an average molecular weight of 3042 ± 15 Da. Tyrosinase inhibition assays demonstrated that valonea tannin was 334 times more effective than gallic acid and 3.4 times more effective than tannic acid, which may relate to the larger molecular size. Kinetic studies of the inhibition reactions indicated that valonea tannin provided tyrosinase inhibition through mixed competitive–uncompetitive way. Stern–Volmer fitted fluorescence quenching analysis, isothermal titration calorimetry analysis and in silico molecule docking showed valonea tannin non-selectively bound to the surface of tyrosinase via hydrogen bonds and hydrophobic interactions. Inductively coupled plasma-optical emission spectroscopy and free radical scavenging assays indicated the valonea tannin had copper ion chelating and antioxidant ability, which may also contribute to inhibition activity. These results demonstrated the structure–function activity of valonea tannin as a highly effective natural tyrosinase inhibitor that may have commercial application in dermatological medicines or cosmetic products.  相似文献   

18.
In this study, poly(styrene‐co‐N‐methacryloyl‐l ‐phenylalanine methyl ester)‐functionalized magnetic nanoparticles were constructed and used as magnetic solid‐phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)‐based sorbents, N‐methacryloyl‐l ‐phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)‐based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)‐based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid‐phase extraction sorbents have a great potential for the analysis of preservatives in food samples.  相似文献   

19.
The magnetic core of manganese ferrite (MnFe2O4) nanoparticles has a significant stability in comparison with ferrite (Fe3O4) nanoparticles. The unique supramolecular properties of β‐cyclodextrin (β‐CD), such as hydrophobic cavity, hydrophilic exterior and ‐OH functional groups, make it a good candidate for functionalization and catalytic application. So, a surface‐modified magnetic solid support with the Cu (II)‐β‐CD complex was prepared. The structure of nanoparticles was characterized by Fourier transform‐infrared spectroscopy, X‐ray powder diffraction, thermogravimetric analysis, vibrating‐sample magnetometry, inductively coupled plasma‐optical emission spectrometry and scanning electron microscope analyses. The catalytic activity of these nanoparticles was investigated in the synthesis of spiropyrans and high yields of desired products obtained under green media. Some advantages of this novel catalyst for this reaction are high yields, short reaction times, green solvent and conditions, easy workup procedure, negligible copper leaching, reusability without a significant diminish in catalytic efficiency, and simple separation of nanocatalyst by using an external magnet alongside the environmental compatibility and sustainability.  相似文献   

20.
The preparation of molecularly imprinted core–shell magnetic nanoparticles and their subsequent use in the solid‐phase extraction of thiabendazole from citrus sample extracts is described. Molecularly imprinted core–shell magnetic nanoparticles were prepared by the precipitation copolymerization of the imprinting polymerization mixture on the surface of vinyl‐modified silica magnetic nanoparticles and were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The obtained molecularly imprinted core–shell magnetic nanoparticles exhibited a high selectivity for thiabendazole and were easily collected and separated by an external magnetic field without additional centrifugation or filtration steps. Under optimum conditions, a magnetic molecularly imprinted solid‐phase extraction method was developed allowing the extraction of thiabendazole from citrus sample extracts and final determination by high‐performance liquid chromatography with fluorescence detection. The detection limit was 0.2 mg/kg, far lower than the maximum residue limit established within the European Union for thiabendazole in citrus samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号