首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
In this paper we describe the fabrication of novel 3D microfluidic paper‐based analytical devices (3D‐μPADs) and a 3D microfluidic thread/paper‐based analytical device (3D‐μTPAD) to detect glucose and BSA through colorimetric assays. The 3D‐μPAD and 3D‐μTPAD consisted of three (wax, heat pressed wax‐printed paper, single‐sided tape) and four (hole‐punched single‐sided tape, blank chromatography circles, heat‐pressed wax‐printed paper, hole‐punched single‐sided tape containing trifurcated thread) layers, respectively. The saturation curves for each assay were generated for all platforms. For the glucose assay, a solution of glucose oxidase (GOx), horseradish peroxidase, and potassium iodide was flowed through each platform and, upon contact with glucose, generated a yellow‐brown color indicative of the oxidation of iodide to iodine. For the protein assay, BSA was flowed through each device and, upon contact with citrate buffer and tetrabromophenol blue, resulted in a color change from yellow to blue. The devices were dried, scanned, and analyzed yielding a correlation between either yellow intensity and glucose concentration or cyan intensity and BSA concentration. A similar glucose assay, using unknown concentrations of glucose in artificial urine, was conducted and, when compared to the saturation curve, showed good correlation between the theoretical and actual concentrations (percent differences <10%). The development of 3D‐μPADs and 3D‐μTPADs can further facilitate the use of these platforms for colorimetric bioassays.  相似文献   

2.
A novel microfluidic thread/paper‐based analytical device (μTPAD) to detect glucose through a colorimetric assay is described. The μTPAD was fabricated from nylon thread trifurcated into three channels terminating at analysis sites comprised of circular zones of chromatography paper, which have previously been spotted with glucose of different concentrations. A solution of glucose oxidase (GOx), horseradish peroxidase (HRP), and potassium iodide (KI) is transported via capillary action to the analysis sites where a yellow‐brown color is observed indicating oxidation of iodide to iodine. The device was then dried, scanned, and analyzed yielding a correlation between yellow intensity and glucose concentrations. Both a flat platform constructed mainly of tape, and a cone platform constructed from tape and polyvinyl chloride, are described. Studies to quantitate glucose in artificial urine showed good correlation using the μTPAD.  相似文献   

3.
A novel microfluidic paper‐based analytical device (μPAD) utilizing a nitrocellulose (NC) membrane to detect IgG antibodies through a colorimetric analysis is described. The μPAD was constructed using layered polyethylene terephthalate (PET) and pressure‐sensitive adhesives (PSA). The biotin labeled Goat Anti‐Mouse IgG antibody was spotted and dried on the NC channel prior to subjecting it to a series of wash solutions (Tris‐tween), increasing concentrations of alkaline phosphatase conjugated to streptavidin (Strep‐ALP), and para‐nitrophenyl phosphate (p‐NPP) realizing a vibrant yellow color. The reaction proceeds for 10 min before applying the p‐NPP stop solution. The device was then dried, scanned, and analyzed yielding a linear range of inverse yellow color intensities versus Strep‐ALP concentrations. The development of this simple μPAD should further facilitate the use of NC in colorimetric assays to detect and quantitate antibodies.  相似文献   

4.
The present work describes the fabrication of paper‐based analytical devices (μPADs) by immobilization of glucose oxidase onto the screen printed carbon electrodes (SPCEs) for the electrochemical glucose detection. The sensitivity towards glucose was improved by using a SPCE prepared from homemade carbon ink mixed with cellulose acetate. In addition, 4‐aminophenylboronic acid (4‐APBA) was used as a redox mediator giving a lower detection potential for improvement selectivity. Under optimized condition, the detection limit was 0.86 mM. The proposed device was applied in real samples. This μPAD has many advantages including low sample consumption, rapid analysis method, and low device cost.  相似文献   

5.
《Electrophoresis》2017,38(7):1002-1006
Neurotransmitters play key roles in cell‐to‐cell communication. These chemical messengers are involved in many functional processes, including growth, reproduction, memory, and behavior. In this communication, we describe a novel microfluidic paper‐based analytical device (μPAD) to detect acetylcholinesterase (AChE) activity and inhibitor screening through a colorimetric analysis. The μPAD is easily fabricated via a wax printing process whereby wax is deposited onto the surface of chromatographic paper, and heated to create a hydrophobic barrier. Separate solutions of 5,5′‐dithiobis‐(2‐nitrobenzoic acid) (DTNB) and samples containing AChE and acetylthiocholine iodide (ATC) (or cysteine, Cys), respectively, are directly spotted onto the μPAD. DTNB and AChE/ATC (or Cys) flow towards each other where a reaction occurs to form the yellow colored 2‐nitro‐5‐thiobenzoic acid anion (TNB2−). The device is dried, scanned, and analyzed yielding a linear range of average inverse yellow intensities versus substrate concentration. An IC50 value (0.045 nM) with a known inhibitor, neostigmine bromide (NB), is obtained on the device. μPADs are low cost and easy to fabricate and have great potential to quantify neurotransmitter activity.  相似文献   

6.
Occupational exposure to Cr is concerning because of its myriad of health effects. Assessing chromium exposure is also cost and resource intensive because the analysis typically uses sophisticated instrumental techniques like inductively coupled plasma-mass spectrometry (ICP-MS). Here, we report a novel, simple, inexpensive microfluidic paper-based analytical device (μPAD) for measuring total Cr in airborne particulate matter. In the μPAD, tetravalent cerium (Ce(IV)) was used in a pretreatment zone to oxidize all soluble Cr to Cr(VI). After elution to the detection zone, Cr(VI) reacts with 1,5-diphenylcarbazide (1,5-DPC) forming 1,5-diphenylcarbazone (DPCO) and Cr(III). The resulting Cr(III) forms a distinct purple colored complex with the DPCO. As proof-of-principle, particulate matter (PM) collected on a sample filter was analyzed with the μPAD to quantify the mass of total Cr. A log-linear working range (0.23–3.75 μg; r2 = 0.998) between Cr and color intensity was obtained with a detection limit of 0.12 μg. For validation, a certified reference containing multiple competing metals was analyzed. Quantitative agreement was obtained between known Cr levels in the sample and the Cr measured using the μPAD.  相似文献   

7.
This work reports a novel fabrication technique for development of channels on paper‐based microfluidic devices using the syringe module of a 3D printing syringe–based system. In this study, printing using polycaprolactone (PCL)‐based ink (Mw 70 000‐90 000) was employed for the generation of functional hydrophobic barriers on Whatman qualitative filter paper grade 1 (approximate thickness of 180 μm and pore diameter of 11 μm), which would effectively channelize fluid flow to multiple assay zones dedicated for different analyte detection on a microfluidic paper‐based analytical device (μPAD). The standardization studies reveal that a functional hydrophilic channel for sample conduction fabricated using the reported technique can be as narrow as 460.7 ± 20 μm and a functional hydrophobic barrier can be of any width with a lower limit of about 982.2 ± 142.75 μm when a minimum number of two layers of the ink is extruded onto paper. A comparison with the hydrodynamic model established for writing with ink is used to explain the width of the line printed by this system. A fluid flow analysis through a single channel system was also carried out to establish its conformity with the Washburn model, which governs the fluid flow in two‐dimensional μPAD. The presented fabrication technique proves to be a robust strategy that effectively taps the advantages of this 3D printing technique in the production of μPADs with enhanced speed and reproducibility.  相似文献   

8.
We report here the use of multiple indicators for a single analyte for paper-based microfluidic devices (μPAD) in an effort to improve the ability to visually discriminate between analyte concentrations. In existing μPADs, a single dye system is used for the measurement of a single analyte. In our approach, devices are designed to simultaneously quantify analytes using multiple indicators for each analyte improving the accuracy of the assay. The use of multiple indicators for a single analyte allows for different indicator colors to be generated at different analyte concentration ranges as well as increasing the ability to better visually discriminate colors. The principle of our devices is based on the oxidation of indicators by hydrogen peroxide produced by oxidase enzymes specific for each analyte. Each indicator reacts at different peroxide concentrations and therefore analyte concentrations, giving an extended range of operation. To demonstrate the utility of our approach, the mixture of 4-aminoantipyrine and 3,5-dichloro-2-hydroxy-benzenesulfonic acid, o-dianisidine dihydrochloride, potassium iodide, acid black, and acid yellow were chosen as the indicators for simultaneous semi-quantitative measurement of glucose, lactate, and uric acid on a μPAD. Our approach was successfully applied to quantify glucose (0.5-20 mM), lactate (1-25 mM), and uric acid (0.1-7 mM) in clinically relevant ranges. The determination of glucose, lactate, and uric acid in control serum and urine samples was also performed to demonstrate the applicability of this device for biological sample analysis. Finally results for the multi-indicator and single indicator system were compared using untrained readers to demonstrate the improvements in accuracy achieved with the new system.  相似文献   

9.
Rapid, precise, and reproducible deposition of a broad variety of functional materials, including analytical assay reagents and biomolecules, has made inkjet printing an effective tool for the fabrication of microanalytical devices. A ubiquitous office device as simple as a standard desktop printer with its multiple ink cartridges can be used for this purpose. This Review discusses the combination of inkjet printing technology with paper as a printing substrate for the fabrication of microfluidic paper‐based analytical devices (μPADs), which have developed into a fast‐growing new field in analytical chemistry. After introducing the fundamentals of μPADs and inkjet printing, it touches on topics such as the microfluidic patterning of paper, tailored arrangement of materials, and functionalities achievable exclusively by the inkjet deposition of analytical assay components, before concluding with an outlook on future perspectives.  相似文献   

10.
《Electrophoresis》2017,38(7):996-1001
In this paper, a microfluidic thread‐based analytical device (μTAD) to assess the activity of acetylcholinesterase (AChE) via colorimetric analylsis is described. Fabrication of the device consists of two platforms, both with a nylon thread trifurcated into three channels terminating at open analysis sites at the end of the thread. 5,5’‐Dithiobis‐(2‐nitrobenzoic acid) (DTNB) was spotted and dried on the analysis sites. Acetylthiocholine iodide (ATC) (or cysteine, Cys) is transported through an inlet channel of the nylon thread by capillary action due to the hydrophilic nature of nylon. AChE is transported through the other inlet channel and mixes with the ATC (or Cys) as they travel up to the analysis sites. As the solution reaches the analysis sites, an intense yellow color change occurs indicating the reaction of the thiol with DTNB to produce the yellow anion TNB2−. The sites are then dried, scanned, yielding a linear range of inverse yellow mean intensity versus substrate concentration. An IC50 value (1.74 nM) with a known inhibitor, neostigmine bromide (NB), is obtained on the device. The multiplex design enables triplicate data collection in a device that is easy to use. μTADs have great potential to be employed in a myriad of tests including point‐of‐care diagnostic devices for resource‐challenged settings.  相似文献   

11.
Recent research on microfluidic paper‐based analytical devices (μPADs) has shown that paper has great potential for the fabrication of low‐cost diagnostic devices for healthcare and environmental monitoring applications. Herein, electrochemiluminescence (ECL) was introduced for the first time into μPADs that were based on screen‐printed paper‐electrodes. To further perform high‐specificity, high‐performance, and high‐sensitivity ECL on μPADs for point‐of‐care testing (POCT), ECL immunoassay capabilities were introduced into a wax‐patterned 3D paper‐based ECL device, which was characterized by SEM, contact‐angle measurement, and electrochemical impedance spectroscopy. With the aid of a home‐made device‐holder, the ECL reaction was triggered at room temperature. By using a typical tris(bipyridine)ruthenium–tri‐n‐propylamine ECL system, this paper‐based ECL 3D immunodevice was applied to the diagnosis of carcinoembryonic antigens in real clinical serum samples. This contribution further expands the number of sensitive and specific detection modes of μPADs.  相似文献   

12.
《Electrophoresis》2017,38(16):1977-1987
Surface‐enhanced Raman spectroscopy (SERS) is an extremely powerful analytical tool, which not only yields information about the molecular structure of the analyte in the form of characteristic vibrational spectrum but also gives sensitivities approaching those in fluorescence spectroscopy. The SERS measurement on the microfluidic platform provides possibility to manufacture the device with design perfectly fulfilling the needs of the application with minimal sample consumption. This review aims at describing basic strategies for SERS measurement in microfluidic devices published in the last decade and covers current trends in microfluidics with SERS detection in the field of bioanalysis and approaches toward on‐line coupling of liquid‐based separation techniques with SERS detection.  相似文献   

13.
Bladder cancer is the fourth most common cancer in men, and it is becoming a prevalent malignancy. Most of the regular clinical examinations are prompt evaluations with cystoscopy, renal function testing, which require high-precision instrument, well-trained operators, and high cost. In this study, a microfluidic paper-based analytical device (μPAD) was fabricated to detect nuclear matrix protein 22 (NMP22) and bladder cancer antigen (BTA) from the urine samples. Urine samples were collected from 11 bladder cancer patients and 10 well-beings as experiment and control groups, respectively, to verify the working efficiency of μPAD. A remarkable checkout efficiency of up to 90.91% was found from the results. Meanwhile, this method is feasible for home-based self-detection from urine samples within 10 min for the total process, which provides a new way for quick, economical, and convenient tumor diagnosis, prognosis evaluation, and drug response.  相似文献   

14.
This paper presents a novel paper‐based analytical device based on the colorimetric paper assays through its light reflectance. The device is portable, low cost (<20 dollars), and lightweight (only 176 g) that is available to assess the cost‐effectiveness and appropriateness of the original health care or on‐site detection information. Based on the light reflectance principle, the signal can be obtained directly, stably and user‐friendly in our device. We demonstrated the utility and broad applicability of this technique with measurements of different biological and pollution target samples (BSA, glucose, Fe, and nitrite). Moreover, the real samples of Fe (II) and nitrite in the local tap water were successfully analyzed, and compared with the standard UV absorption method, the quantitative results showed good performance, reproducibility, and reliability. This device could provide quantitative information very conveniently and show great potential to broad fields of resource‐limited analysis, medical diagnostics, and on‐site environmental detection.  相似文献   

15.
Isoelectric focusing plays a critical role in the analysis of complex protein samples. Conventionally, isoelectric focusing is implemented with carrier ampholytes in capillary or immobilized pH gradient gel. In this study, we successfully exhibited a carrier ampholyte‐free isoelectric focusing on paper‐based analytical device. Proof of the concept was visually demonstrated with color model proteins. Experimental results showed that not only a pH gradient was well established along the open paper fluidic channel as confirmed by pH indicator strip, the pH gradient range could also be tuned by the catholyte or anolyte. Furthermore, the isoelectric focusing fractions from the paper channel can be directly cut and recovered into solutions for post analysis with sodium dodecyl sulfate‐polyacrylamide gel electrophoresis and matrix‐assisted laser desorption/ionization‐time‐of‐flight mass spectrometry. This paper‐based isoelectric focusing method is fast, cheap, simple and easy to operate, and could potentially be used as a cost‐effective protein sample clean‐up method for target protein analysis with mass spectrometry.  相似文献   

16.
A low cost, disposable and easy to use microfluidic paper-based analytical device (μPAD) was developed for simple and non-invasive determination of total aldehydes in saliva with a potential to be used in epidemiological studies to assess oral cancer risk. The μPAD is based on the colour reaction between aldehydes (e.g. acetaldehyde, formaldehyde), 3-methyl-2-benzothiazolinone hydrazone (MBTH) and iron(III) to form an intense blue coloured formazan dye. The newly developed μPAD has a 3D design with two overlapping paper layers. The first layer comprises 15 circular detection zones (8 mm in diameter), each impregnated with 8 μL of MBTH, while the second layer contains 15 reagent zones (4 mm in diameter). Two μL of iron(III) chloride are added to each one of the second layer zones after the addition of sample to the detection zones in the first layer. All hydrophilic zones of the μPAD are defined by wax printing using a commercial wax printer.  相似文献   

17.
In this work, we first introduce the fabrication of microfluidic cloth-based analytical devices (μCADs) using a wax screen-printing approach that is suitable for simple, inexpensive, rapid, low-energy-consumption and high-throughput preparation of cloth-based analytical devices. We have carried out a detailed study on the wax screen-printing of μCADs and have obtained some interesting results. Firstly, an analytical model is established for the spreading of molten wax in cloth. Secondly, a new wax screen-printing process has been proposed for fabricating μCADs, where the melting of wax into the cloth is much faster (∼5 s) and the heating temperature is much lower (75 °C). Thirdly, the experimental results show that the patterning effects of the proposed wax screen-printing method depend to a certain extent on types of screens, wax melting temperatures and melting time. Under optimized conditions, the minimum printing width of hydrophobic wax barrier and hydrophilic channel is 100 μm and 1.9 mm, respectively. Importantly, the developed analytical model is also well validated by these experiments. Fourthly, the μCADs fabricated by the presented wax screen-printing method are used to perform a proof-of-concept assay of glucose or protein in artificial urine with rapid high-throughput detection taking place on a 48-chamber cloth-based device and being performed by a visual readout. Overall, the developed cloth-based wax screen-printing and arrayed μCADs should provide a new research direction in the development of advanced sensor arrays for detection of a series of analytes relevant to many diverse applications.  相似文献   

18.
Many diagnostic tests in a conventional clinical laboratory are performed on blood plasma because changes in its composition often reflect the current status of pathological processes throughout the body. Recently, a significant research effort has been invested into the development of microfluidic paper-based analytical devices (μPADs) implementing these conventional laboratory tests for point-of-care diagnostics in resource-limited settings. This paper describes the use of red blood cell (RBC) agglutination for separating plasma from finger-prick volumes of whole blood directly in paper, and demonstrates the utility of this approach by integrating plasma separation and a colorimetric assay in a single μPAD. The μPAD was fabricated by printing its pattern onto chromatography paper with a solid ink (wax) printer and melting the ink to create hydrophobic barriers spanning through the entire thickness of the paper substrate. The μPAD was functionalized by spotting agglutinating antibodies onto the plasma separation zone in the center and the reagents of the colorimetric assay onto the test readout zones on the periphery of the device. To operate the μPAD, a drop of whole blood was placed directly onto the plasma separation zone of the device. RBCs in the whole blood sample agglutinated and remained in the central zone, while separated plasma wicked through the paper substrate into the test readout zones where analyte in plasma reacted with the reagents of the colorimetric assay to produce a visible color change. The color change was digitized with a portable scanner and converted to concentration values using a calibration curve. The purity and yield of separated plasma was sufficient for successful operation of the μPAD. This approach to plasma separation based on RBC agglutination will be particularly useful for designing fully integrated μPADs operating directly on small samples of whole blood.  相似文献   

19.
Point-of-care platforms can provide fast responses, decrease the overall cost of the treatment, allow for in-home determinations with or without a trained specialist, and improve the success of the treatment. This is especially true for microfluidic paper-based analytical devices (μPAD), which can enable the development of highly efficient and versatile analytical tools with applications in a variety of biomedical fields. The objective of this work was the development of μPADs to identify and quantify levels of nitrite in saliva, which has been proposed as a potential marker of periodontitis. The devices were fabricated by wax printing and allowed the detection of nitrite by a colorimetric reaction based on a modified version of the Griess reaction. The presented modifications, along with the implementation of a paper-based platform, address many of the common drawbacks (color development, stability, etc.) associated with the Griess reaction and are supported by results related to the design, characterization, and application of the proposed devices. Under the optimized conditions, the proposed devices enable the determination of nitrite in the 10–1000 μmol L−1 range with a limit of detection of 10 μmol L−1 and a sensitivity of 47.5 AU [log (μmol L−1)]−1. In order to demonstrate the potential impact of this technology in the healthcare industry, the devices were applied to the analysis of a series of real samples, covering the relevant clinical range.  相似文献   

20.
Insulator‐based dielectrophoresis (iDEP) is a well‐known technique that harnesses electric fields for separating, moving, and trapping biological particle samples. Recent work has shown that utilizing DC‐biased AC electric fields can enhance the performance of iDEP devices. In this study, an iDEP device with 3D varying insulating structures analyzed in combination with DC biased AC fields is presented for the first time. Using our unique reactive ion etch lag, the mold for the 3D microfluidic chip is created with a photolithographic mask. The 3D iDEP devices, whose largest dimensions are 1 cm long, 0.18 cm wide, and 90 μm deep are then rapidly fabricated by curing a PDMS polymer in the glass mold. The 3D nature of the insulating microstructures allows for high trapping efficiency at potentials as low as 200 Vpp. In this work, separation of Escherichia coli from 1 μm beads and selective trapping of live Staphylococcus aureus cells from dead S. aureus cells is demonstrated. This is the first reported use of DC‐biased AC fields to selectively trap bacteria in 3D iDEP microfluidic device and to efficiently separate particles where selectivity of DC iDEP is limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号