首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein sample preparation is a crucial step in a 2‐DE proteomics approach. In order to establish a routine protocol for the application of proteomics analysis to aphids, this study focuses on the specific protein extraction problems in insect tissues and evaluates four methods to bypass them. The approaches of phenol extraction methanol/ammonium acetate precipitation (PA), TCA/acetone precipitation, PEG precipitation, and no precipitation were evaluated for proteins isolation and purification from apterous adult aphids, Sitobion avenae. For 2‐DE, the PA protocol was optimal, resulting in good IEF and clear spots. PA method yielded the greatest amount of protein and displayed most protein spots in 2‐DE gels, as compared with the TCA/acetone precipitation, PEG precipitation and no precipitation protocols. Analysis of protein yield, image quality and spot numbers demonstrate that the TCA/acetone precipitation protocol is a reproducible and reliable method for extracting proteins from aphids. The PEG precipitation approach is a newly developed protein extraction protocol for aphids, from which more unique protein spots can be detected, especially for detection of acid proteins. These protocols are expected to be applicable to other insects or could be of interest to laboratories involved in insect proteomics, despite the amounts and types of interfering compounds vary considerably in different insects.  相似文献   

3.
Wang W  Vignani R  Scali M  Cresti M 《Electrophoresis》2006,27(13):2782-2786
A simple and universally applicable protocol for extracting high-quality proteins from recalcitrant plant tissues is described. We have used the protocol with no modification, for a wide range of leaves and fruits. In all cases, this protocol allows to obtain good electrophoretic separation of proteins. As the protocol is rapid, universal, and compatible with silver staining, it could be used for routine protein extraction from recalcitrant plant tissues for proteomic analysis.  相似文献   

4.
Wang X  Li X  Deng X  Han H  Shi W  Li Y 《Electrophoresis》2007,28(21):3976-3987
Protein extraction from plants like the halophyte Salicornia europaea has been problematic using standard protocols due to high concentrations of salt ions in their cells. We have developed an improved method for protein extraction from S. europaea, which allowed us to remove interfering compounds and salt ions by including the chemicals borax, polyvinylpolypyrrolidone, and phenol. The comparative study of this method with several other protocols using NaCl-treated S. europaea shoots demonstrated that this method gave the best distinction of proteins on 2-DE gels. This protocol had a wide range of applications as high yields and good distinction of 1-DE gels for proteins isolated from twelve other plants were rendered. In addition, we reported results of 2-DE using the recalcitrant tissue of the S. europaea roots. We also demonstrated that this protocol is compatible with proteomic analysis as eight specific proteins generated by this method have been identified by MS. In conclusion, our newly developed protein extraction protocol is expected to have excellent applications in proteomic studies of halophytes.  相似文献   

5.
The extraction of high‐purity proteins from the washing solution (WS) of rubber particles (also termed latex‐producing organelles) from laticifer cells in rubber tree for proteomic analysis is challenging due to the low concentration of proteins in the WS. Recent studies have revealed that proteins in the WS might play crucial roles in natural rubber biosynthesis. To further examine the involvement of these proteins in natural rubber biosynthesis, we designed an efficiency method to extract high‐purity WS proteins. We improved our current borax and phenol‐based method by adding reextraction steps with phenol (REP) to improve the yield from low protein concentration samples. With this new method, we extracted WS proteins that were suitable for proteomics. Indeed, compared to the original borax and phenol‐based method, the REP method improved both the quality and quantity of isolated proteins. By repeatedly extracting from low protein concentration solutions using the same small amount of phenol, the REP method yielded enough protein of sufficiently high‐quality from starting samples containing less than 0.02 mg of proteins per milliliter. This method was successfully applied to extract the rubber particle proteins from the WS of natural rubber latex samples. The REP‐extracted WS proteins were resolved by 2DE, and 28 proteins were positively identified by MS. This method has the potential to become widely used for the extraction of proteins from low protein concentration solutions for proteomic analysis.  相似文献   

6.
Preparation of high-quality proteins from cacao vegetative organs is difficult due to very high endogenous levels of polysaccharides and polyphenols. In order to establish a routine procedure for the application of proteomic and biochemical analysis to cacao tissues, three new protocols were developed; one for apoplastic washing fluid (AWF) extraction, and two for protein extraction--under denaturing and nondenaturing conditions. The first described method allows a quick and easy collection of AWF--using infiltration-centrifugation procedure--that is representative of its composition in intact leaves according to the smaller symplastic contamination detected by the use of the hexose phosphate isomerase marker. Protein extraction under denaturing conditions for 2-DE was remarkably improved by the combination of chemically and physically modified processes including phenol, SDS dense buffer and sonication steps. With this protocol, high-quality proteins from cacao leaves and meristems were isolated, and for the first time well-resolved 1-DE and 2-DE protein patterns of cacao vegetative organs are shown. It also appears that sonication associated with polysaccharide precipitation using tert-butanol was a crucial step for the nondenaturing protein extraction and subsequent enzymatic activity detection. It is expected that the protocols described here could help to develop high-level proteomic and biochemical studies in cacao also being applicable to other recalcitrant plant tissues.  相似文献   

7.
Song J  Braun G  Bevis E  Doncaster K 《Electrophoresis》2006,27(15):3144-3151
Fruit tissues are considered recalcitrant plant tissue for proteomic analysis. Three phenol-free protein extraction procedures for 2-DE were compared and evaluated on apple fruit proteins. Incorporation of hot SDS buffer, extraction with TCA/acetone precipitation was found to be the most effective protocol. The results from SDS-PAGE and 2-DE analysis showed high quality proteins. More than 500 apple polypeptides were separated on a small scale 2-DE gel. The successful protocol was further tested on banana fruit, in which 504 and 386 proteins were detected in peel and flesh tissues, respectively. To demonstrate the quality of the extracted proteins, several protein spots from apple and banana peels were cut from 2-DE gels, analyzed by MS and have been tentatively identified. The protocol described in this study is a simple procedure which could be routinely used in proteomic studies of many types of recalcitrant fruit tissues.  相似文献   

8.
Yao Y  Yang YW  Liu JY 《Electrophoresis》2006,27(22):4559-4569
Preparation of high-quality proteins from cotton fiber tissues is difficult due to high endogenous levels of polysaccharides, polyphenols, and other interfering compounds. To establish a routine procedure for the application of proteomic analysis to cotton fiber tissues, a new protocol for protein extraction was developed by optimizing a phenol extraction method combined with methanol/ammonium acetate precipitation. The protein extraction for 2-DE was remarkably improved by the combination of chemically and physically modified processes including polyvinylpolypyrrolidone (PVPP) addition, acetone cleaning, and SDS replacement. The protocol gave a higher protein yield and vastly greater resolution and spot intensity. The efficiency of this protocol and its feasibility in fiber proteomic study were demonstrated by comparison of the cotton fiber proteomes at two growth stages. Furthermore, ten protein spots changed significantly were identified by MS/tandem MS and their potential relationships to fiber development were discussed. To the best of our knowledge, this is the first time that a protocol for protein extraction from cotton fiber tissues appears to give satisfactory and reproductive 2-D protein profiles. The protocol is expected to accelerate the process of the proteomic study of cotton fibers and also to be applicable to other recalcitrant plant tissues.  相似文献   

9.
A procedure for identification of malting barley varieties using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) of ethanol‐soluble barley proteins (hordeins) is described. The hordeins were first extracted from milled barley grains by several extraction protocols (using different extraction agents and conditions). Hordein extracts were then analyzed directly via MALDI‐TOF MS without any preliminary purification or separation step, and the protein profiles of analyzed hordein extracts were compared in order to find out the most suitable extraction procedure for mass spectrometric analysis. The optimized procedure was successfully applied to identification of 13 malting barley varieties. Our results revealed that the proposed mass spectrometry‐based approach provides characteristic mass patterns of extracted hordeins, which can be advantageously used for barley variety identification. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Mass spectrometry (MS)‐based proteomics provides unprecedented opportunities for understanding the structure and function of proteins in complex biological systems; however, protein solubility and sample preparation before MS remain a bottleneck preventing high‐throughput proteomics. Herein, we report a high‐throughput bottom‐up proteomic method enabled by a newly developed MS‐compatible photocleavable surfactant, 4‐hexylphenylazosulfonate (Azo) that facilitates robust protein extraction, rapid enzymatic digestion (30 min compared to overnight), and subsequent MS‐analysis following UV degradation. Moreover, we developed an Azo‐aided bottom‐up method for analysis of integral membrane proteins, which are key drug targets and are generally underrepresented in global proteomic studies. Furthermore, we demonstrated the ability of Azo to serve as an “all‐in‐one” MS‐compatible surfactant for both top‐down and bottom‐up proteomics, with streamlined workflows for high‐throughput proteomics amenable to clinical applications.  相似文献   

11.
A shotgun proteomics approach was used to characterize the quinoa seed proteome. To obtain comprehensive proteomic data from quinoa seeds three different precipitation procedures were employed: MeOH/CHCl3/double‐distilled H2O, acetone either alone or with trichloroacetic acid; the isolated proteins were then in‐solution digested and the resulting peptides were analyzed by nano‐liquid chromatography coupled to tandem mass spectrometry. However, since quinoa is a nonmodel plant species, only a few protein sequences are included in the most widely known protein sequence databases. To improve the data reliability a UniProt subdatabase, containing only proteins of Caryophillales order, was used. A total of 352 proteins were identified and evaluated both from a qualitative and quantitative point of view. This combined approach is certainly useful to increase the final number of identifications, but no particular class of proteins was extracted and identified in spite of the different chemistries and the different precipitation protocols. However, with respect to the other two procedures, from the relative quantitative analysis, based on the number of spectral counts, the trichloroacetic acid/acetone protocol was the best procedure for sample handling and quantitative protein extraction. This study could pave the way to further high‐throughput studies on Chenopodium Quinoa.  相似文献   

12.
The nutritional and cancer-protective properties of the oil extracted mechanically from the ripe fruits of Olea europaea trees are attracting constantly more attention worldwide. The preparation of high-quality protein samples from plant tissues for proteomic analysis poses many challenging problems. In this study we employed a proteomic platform based on two different extraction methods, SDS and CHAPS based protocols, followed by two precipitation protocols, TCA/acetone and MeOH precipitation, in order to increase the final number of identified proteins.  相似文献   

13.
Mass determination by mass spectrometric methods (electrospray ionization mass spectrometry (ESI-MS), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS)) of sodiumdodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)-separated proteins is a well known procedure and reliable protocols are available. In our efforts to use the established methods to determine the molecular mass of the disulfide bridged, heterodimeric glycoprotein GP3 and to determine the carbohydrate content of each protein subunit we developed an in-gel chemical deglycosylation method. For this purpose we established experimental conditions that allow maximum extraction of the high molecular mass protein subunits and developed a routine method to apply the HF-pyridine deglycosylation protocol to proteins isolated from polyacrylamide gel pieces. The novel protocol and extraction procedure described can be used to analyze O-glycosylated proteins up to 150 kDa after SDS-PAGE separation.  相似文献   

14.
The analysis of proteins in biological samples is highly desirable, given their connection to myriad biological functions and disease states, as well as the growing interest in the development of protein‐based pharmaceuticals. The introduction and maturation of “soft” ionization methods, such as electrospray ionization and matrix‐assisted laser desorption/ionization, have made mass spectrometry an indispensable tool for the analysis of proteins. Despite the availability of powerful instrumentation, sample preparation and fractionation remain among the most challenging aspects of protein analysis. This review summarizes these challenges and provides an overview of the state‐of‐the‐art in sample preparation and fractionation of proteins for mass spectrometric analysis, with an emphasis on those used for top‐down proteomic approaches. Biological fluids, particularly important for clinical and pharmaceutical applications and their characteristics are also discussed. While immunoaffinity‐based methods are addressed, more attention is given to non‐immunoaffinity‐based methods, such as precipitation, coacervation, size exclusion, dialysis, solid‐phase extraction, and electrophoresis. These techniques are presented in the context of a significant number of studies where they have been developed and utilized.  相似文献   

15.
Commonly used methods for protein extraction from plant leaves, such as extraction with phenol or a combination of trichloroacetic acid and acetone, were ineffective for four tested cultivars of poplar. Moreover, multiple protocols for 2DE of the extracted proteins gave different results when protein profiles of relatively closely related plants were compared. Given that polycyclic compounds strongly hinder 2DE, we analyzed the impact of polyphenols and polysaccharides present in the plant tissues used for protein extraction, on the quality of 2DE protein profiles. Analysis of content of polyphenols and polysaccharides in leaves of poplar cultivars showed that even small differences in concentrations of analyzed metabolites accompany large differences between poplar cultivars when considering the susceptibility of samples to protein extraction for 2DE. High‐quality 2DE results were correlated with decreased amounts of polyphenols. Additional analysis using MS/MS suggested that only levels of total phenolics affected the results of 2DE. Soluble total nonstructural carbohydrates also had a negative effect, but the level of starch was not important. Finally, we present an optimized method for extraction of proteins from poplar leaves, which enables reliable comparative analysis of four different poplar cultivars, that is, “Eridano,” “Villafranca,” “NE‐42,” and “Luisa Avanzo,” which have not yet been used for the proteomic studies.  相似文献   

16.
Multi-dimensional protein identification technology (MudPIT) is becoming a prevalent proteomic approach due to its high-throughput separations and accurate mass detection. Prior to MudPIT analysis, complicated samples required in-solution digestion. Unlike in-gel digestion, in which enzymes work on just a few proteins, in-solution digestion involves simultaneous digestion of hundreds or thousands of proteins. In-solution digestion protocols must therefore be very efficient. Few investigations have evaluated the efficiency of in-solution digestion protocols. The present research compared three such protocols. Results suggest that a protocol utilizing trifluoroethanol (TFE) as denaturant is most efficient.  相似文献   

17.
The growing availability of genomic sequence information, together with improvements in analytical methodology, have enabled high throughput, high sensitivity protein identification. Silver staining remains the most sensitive method for visualization of proteins separated by two-dimensional gel electrophoresis (2-D PAGE). Several silver staining protocols have been developed which offer improved compatibility with subsequent mass spectrometric analysis. We describe a modified silver staining method that is available as a commercial kit (Silver Stain PlusOne; Amersham Pharmacia Biotech, Amersham, UK). The 2-D patterns abtained with this modified protocol are comparable to those from other silver staining methods. Omitting the sensitizing reagent allows higher loading without saturation, which facilitates protein identification and quantitation. We show that tryptic digests of proteins visualized by the modified stain afford excellent mass spectra by both matrix-assisted laser desorption/ionization and tandem electrospray ionization. We conclude that the modified silver staining protocol is highly compatible with subsequent mass spectrometric analysis.  相似文献   

18.
The purpose of this research is to establish a routine procedure for the application of proteomic analysis to olive tree. Olive leaf tissue is notoriously recalcitrant to common protein extraction methods due to high levels of interfering compounds. We developed a protocol for isolating proteins suitable for two-dimensional electrophoresis (2-DE) from olive leaf. The remarkable characteristics of the protocol include: (i) additional grinding dry acetone powder of leaf tissue to a finer extent, (ii) after extensive organic solvent washes to remove pigments, lipids etc., using aqueous tricholoroacetic acid washes to remove water-soluble contaminants, and (iii) phenol extraction of proteins in the presence of sodium dodecyl sulfate. The final protein preparation is free of interfering compounds based on its well-resolved 2-DE patterns. The protocol can be completed within 3 h, and protein yield is approximately 2.49 mg.g(-1) of aged leaf. We also evaluated the protocol by immunoblotting with anti-tyrosinate alpha-tubulin antibody. To our knowledge, this is the first time that a protocol for protein extraction from olive leaf appears to give satisfactory and reproducible results. The protocol is expected to be applicable to other recalcitrant plant tissues and could be of interest to laboratories involved in plant proteomics.  相似文献   

19.
This work was aimed at optimizing a protein extraction procedure for date palm (Phoenix dactylifera L.) leaves, a highly recalcitrant plant tissue for 2-DE. Five protein extraction protocols based on different protein precipitation agents (TCA/acetone vs. phenol (Ph) methods) and protein resolubilization methods (physical treatments, e.g., sonication, shaking and/or heating) were tested. Ph/SDS extraction with methanol/ammonium acetate precipitation, followed by DOC preincubation and TCA/acetone precipitation and, finally, solubilization by shaking in rehydration solution was found to be the best protein extraction method. We conclude that DOC with TCA/acetone precipitation step eliminates interfering compounds, thus allowing efficient resolubilization of date palm leaf proteins. This method could be appropriate for proteomic studies such as date palm colonization by entomopathogenic fungi.  相似文献   

20.
Preparation of proteins from salt‐gland‐rich tissues of mangrove plant is necessary for a systematic study of proteins involved in the plant's unique desalination mechanism. Extraction of high‐quality proteins from the leaves of mangrove tree species, however, is difficult due to the presence of high levels of endogenous phenolic compounds. In our study, preparation of proteins from only a part of the leaf tissues (i.e. salt gland‐rich epidermal layers) was required, rendering extraction even more challenging. By comparing several extraction methods, we developed a reliable procedure for obtaining proteins from salt gland‐rich tissues of the mangrove species Avicennia officinalis. Protein extraction was markedly improved using a phenol‐based extraction method. Greater resolution 1D protein gel profiles could be obtained. More promising proteome profiles could be obtained through 1D‐LC‐MS/MS. The number of proteins detected was twice as much as compared to TUTS extraction method. Focusing on proteins that were solely present in each extraction method, phenol‐based extracts contained nearly ten times more proteins than those in the extracts without using phenol. The approach could thus be applied for downstream high‐throughput proteomic analyses involving LC‐MS/MS or equivalent. The proteomics data presented herein are available via ProteomeXchange with identifier PXD001691.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号