首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three liquid chromatography–tandem mass spectrometry (LC‐MS/MS) methods were respectively developed and validated for the simultaneous or independent determination of taurine and edaravone in rat plasma using 3‐methyl‐1‐p‐tolyl‐5‐pyrazolone and sulfanilic acid as the internal standards (IS). Chromatographic separations were achieved on an Agilent Zorbax SB‐Aq (100 × 2.1 mm, 3.5 µm) column. Gradient 0.03% formic acid–methanol, isocratic 0.1% formic acid–methanol (90:10) and 0.02% formic acid–methanol (40:60) were respectively selected as the mobile phase for the simultaneous determination of two analytes, taurine or edaravone alone. The MS acquisition was performed in multiple reaction monitoring mode with a positive and negative electrospray ionization source. The mass transitions monitored were m/z [M + H]+ 175.1 → 133.0 and [M + H]+ 189.2 → 147.0 for edaravone and its IS, m/z [M ? H]? 124.1 → 80.0 and [M ? H]? 172.0 → 80.0 for taurine and its IS, respectively. The validated methods were successfully applied to study the pharmacokinetic interaction of taurine and edaravone in rats after independent intravenous administration and co‐administration with a single dose. Our collective results showed that there were no significant alterations on the main pharmacokinetic parameters (area under concentration–time curve, mean residence time, half‐life and clearance) of taurine and edaravone, implying that the proposed combination therapy was pharmacologically feasible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Sumatriptan succinate, a selective 5‐HT1B receptor agonist, was subjected to forced degradation studies as per to International Conference on Harmonization‐specified conditions. The drug exclusively showed its degradation under basic, photolytic, and oxidative stress conditions, whereas it was found to be stable under acidic, thermal, and neutral conditions. Eight (DP‐1 to DP‐8) degradation products were identified and characterized by UPLC‐ESI/MS/MS experiments combined with accurate mass measurements. The effective chromatographic separation was achieved on Hibar Purospher STAR, C18 (250 × 4.6 mm, 5 μm) column using mobile phase consisting of 0.1% formic acid and methanol at a flow rate of 0.6 mL/minute in gradient elution method. It is noteworthy that 2 major degradation products DP‐3 and DP‐7 were isolated using preparative HPLC and characterized by advanced NMR experiments. The degradation pathway of the sumatriptan was established, which was duly justified by mechanistic explanation. In vitro cytotoxicity of isolated DPs was tested on normal human cells such as HEK 293 (embryonic kidney cells) and RWPE‐1 (normal prostate epithelial cells). This study revealed that they were nontoxic up to 100 μm concentration. Further, in silico toxicity of the drug and its degradation products was determined using ProTox‐II prediction tool. This study revealed that DP‐4 and DP‐8 are predicted for immune toxicity. Amine oxidase A and prostaglandin G/H synthase 1 are predicted as toxicity targets for DP‐3, DP‐4, and DP‐6 whereas DP‐1 and DP‐2 are predicted for amine oxidase A target.  相似文献   

3.
A rapid, specific and reliable isocratic high-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS/MS) method has been developed and validated for the identification and characterization of stressed degradation products of metoprolol. Metoprolol, an anti-hypertensive drug, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per ICH-specified conditions. The drug showed extensive degradation under oxidative and hydrolysis (acid and base) stress conditions. However, it was stable to thermal, neutral and photolysis stress conditions. A total of 14 degradation products were observed and the chromatographic separation of the drug and its degradation products was achieved on a C(18) column (4.6 × 250 mm, 5 μm). To characterize degradation products, initially the mass spectral fragmentation pathway of the drug was established with the help of MS/MS, MS(n) and accurate mass measurements. Similarly, fragmentation pattern and accurate masses of the degradation products were established by subjecting them to LC-MS/QTOF analysis. Structure elucidation of degradation products was achieved by comparing their fragmentation pattern with that of the drug. The degradation products DP(2) (m/z 153) and DP(14) (m/z 236) were matched with impurity B, listed in European Pharmacopoeia and British Pharmacopoeia, and impurity I, respectively. The LC-MS method was validated with respect to specificity, linearity, accuracy and precision.  相似文献   

4.
Parkinson's disease (PD) is a very serious neurological disorder, and current methods of treatment fail to achieve long‐term control. SCH 420814 is a potent, selective and orally active adenosine A2A receptor antagonist discovered by Schering‐Plough. Stability testing provides evidence of the quality of a bulk drug when exposed to the influence of environmental factors. Understanding the drug degradation profiles is critical to the safety and potency assessment of the drug candidate for clinical trials. As a result, identification of degradation products has taken an important role in drug development process. In this study, a rapid and sensitive method was developed for the structural determination of the degradation products of SCH 420814 formed under different forced conditions. The study utilizes a combination of liquid chromatography–tandem‐mass spectrometry (LC‐MS/MS) and Fourier Transform (FT) MS techniques to obtain complementary information for structure elucidation of the unknowns. This combination approach has significant impact on degradation product identification. A total of ten degradation products of SCH 420814 were characterized using the developed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A stability‐indicating reverse‐phase high‐performance liquid chromatography–mass spectrometric method was developed and validated for the assay of metaxalone through forced degradation under acidic, alkaline, photo, oxidative and peroxide stress conditions. Separation of degradation products was accomplished on a reverse‐phase Phenomenex C18 (250 × 4.6 mm, 5 µm) column thermostated at 25°C using 10 mM aqueous ammonium acetate: methanol (35:65 v/v) as mobile phase in an isocratic mode of elution. The eluents were detected at 275 nm by photo diode array detector and mass detectors connected in series. Two unknown base hydrolysis products of metaxalone were identified and characterized as (a) methyl 3‐(3,5‐dimethylphenoxy)‐2‐hydroxypropylcarbamate and (b) 1‐(3,5‐dimethylphenoxy)‐3‐aminopropan‐2‐ol by MS, 1H NMR and FTIR spectroscopy. The method was validated as per International Conference on Harmonization guidelines and metaxalone was selectively determined in presence of its degradation impurities, demonstrating its stability‐indicating nature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
LC/ToF-MS was used to identify new chlorination and bromination products of 4-nonylphenol (4-NP), such as 4-NPBr2, 4-NPBrCl, 4-NP dimer (2 isomers), 4-NPCl dimer (2 isomers), 4-NPBr dimer, and a series of methoxy bromo and chloro 4-NPs from a laboratory study of nonylphenol chlorination. The identification procedure used the exact mass, exact mass of the isotope cluster, and their relative intensities, at an average mass accuracy of approximately 1 ppm. The products were produced by a simulated study of industrial cleaning procedures where 4-NP, nonylphenol ethoxylate (NPEO-1 and 2), and nonylphenol carboxylate (NPEC-1) were in contact with sodium hypochlorite solutions (with and without bromide) of various strengths (possible environmental scenarios) at neutral pH. The formation of the products was measured as a function of chlorine concentration, and it was found that 4-NP was the most reactive, producing 4-NPCl, 4-NPCl2, 4-NP (dimers), and the 4-NPCl (dimers). In the presence of bromide ions, a mixture results with products of 4-NPBr2, 4-NPCl, 4-NPCl2, 4-NPBrCl, 4-NPBr, and a 4-NPBr dimer. Less reactive to halogenation was NPEO, which formed only the monochloro and monobromo products, and the least reactive was NPEC. A simple stereochemical model is used to explain halogenation reactivity for the family of 4-NPs and NPEOs at neutral pH. The presence of halogenated 4-NP dimers (bromo and chloro diphenyl ethers) is discussed as a possible source of new endocrine disrupters.  相似文献   

7.
The US Food and Drug Administration and the European Medicines Agency approved alpelisib in 2019 for the treatment of metastatic breast cancer. A thorough literature review revealed that a stability-indicating analytical method (SIAM) is not available for the quantification of alpelisib and its degradation products (DPs). In this study, per the comprehensive stress study recommended by the International Council for Harmonisation (ICH), alpelisib was exposed to hydrolysis, oxidation, photolysis, and thermal stress. Degradation of the drug was observed under hydrolysis, oxidative, and photolysis conditions, whereas the drug was stable under thermal stress condition. We developed a SIAM for the separation of alpelisib and its major DPs that were formed under different stress conditions. The validation of the developed method was performed per ICH Q2(R1) guidelines. Five DPs were identified and characterized. Structure elucidation of all DPs was performed with the modern characterization tool of liquid chromatography-quadrupole time-of-flight mass spectrometer (LC-Q-TOF-MS/MS). The degradation pathway of the drug and its mechanisms were outlined, and in silico toxicity prediction was performed using the ProTox-II tool.  相似文献   

8.
A reversed-phase high-performance liquid chromatographic method for simultaneous separation and determination of citalopram hydrobromide and its process impurities in bulk drugs and pharmaceutical formulations was developed. The separation was accomplished on an Inertsil ODS 3V (250x4.6 mm; particle size 5 mum) column using 0.3% diethylamine (pH = 4.70) and methanol/acetonitrile (55:45 v/v) as mobile phase in a gradient elution mode. The eluents were monitored by a photodiode array detector set at 225 nm. The chromatographic behavior of all the related substances was examined under variable conditions of different solvents, buffer concentrations, and pH. The method was validated in terms of accuracy, precision, and linearity. The method could be of use not only for rapid and routine evaluation of the quality of citalopram in bulk drug manufacturing units but also for the detection of its impurities in pharmaceutical formulations. Three unknown impurities were consistently observed during the analysis of different batches of citalopram. Forced degradation of citalopram was carried out under thermal, photo, acidic, alkaline, and peroxide conditions. The degradation products and unknown impurities were isolated and characterized by ESI-MS/MS, (1)H NMR, and FT-IR spectroscopy.  相似文献   

9.
The levels of urinary catecholamine metabolites, such as homovanillic acid (HVA) and vanillylmandelic acid, are routinely used as a clinical tool in the diagnosis and follow‐up of neuroblastoma (NB) patients. Recently, in the Clinical Pathology Laboratory Unit of G. Gaslini Children Hospital, a commercial method that employs liquid chromatography coupled to electrochemical detection (LC‐EC) has been introduced for the measurement of these metabolites in the routine laboratory practice. Using this LC‐EC method, an unknown peak could be observed only in samples derived from NB patients. To investigate the nature of this peak, we used a combination of liquid chromatography‐time‐of‐flight mass spectrometry (LC‐TOF‐MS) and liquid chromatography‐ion trap tandem mass spectrometry (LC‐IT‐MS). The first approach was used to obtain the elemental composition of the ions present in this new signal. To get additional structural information useful for the elucidation of unknown compounds, the ion trap analyzer was exploited. We were able to identify not just one, but three unknown signals in urine samples from NB patients which corresponded to three conjugated products of HVA: HVA sulfate and two glucuronoconjugate isomers. The enzymatic hydrolysis with β‐glucuronidase confirmed the proposed structures, while the selective alkaline hydrolysis allowed us to distinguish the difference between phenol‐ and acyl‐glucuronide of HVA. The latter was the unknown peak observed in LC‐EC separations of urine samples from NB patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive, selective and rapid liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the simultaneous determination of bupropion (BUP) and its major active metabolite hydroxybupropion (HBUP) in human plasma. Separation of both the analytes and venlafaxine as internal standard (IS) from 50 μL human plasma was carried out by solid‐phase extraction. The chromatographic separation of the analytes was achieved on a Zorbax Eclipse XDB C18 (150 × 4.6 mm, 5 µm) analytical column using isocratic mobile phase consisting of 20 mm ammonium acetate–methanol (10:90, v/v), with a resolution factor of 3.5. The method was validated over a wide dynamic concentration range of 0.1–350 ng/mL for BUP and 0.1–600 ng/mL for HBUP. The matrix effect was assessed by post‐column infusion and the mean process efficiency was 96.08 and 94.40% for BUP and HBUP, respectively. The method was successfully applied to a bioequivalence study of 150 mg BUP (test and reference) extended release tablet formulation in 12 healthy Indian male subjects under fed conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Lipid peroxidation process has attracted much attention due to the growing evidence of its involvement in the pathogenesis of age-related diseases. The monitoring of the lipid peroxidation products in phospholipids, formed under oxidative stress conditions, may provide new markers for oxidative stress signaling and for disease states, giving new insights in the pathogenesis process. Reversed-phase liquid chromatographic method coupled to mass spectrometry was developed for the separation of oxidized glycero-phosphatidylcholine (GPC) peroxidation products formed by the Fenton reaction that mimic in vivo oxidative stress conditions. The LC-MS conditions were applied for the separation of peroxidation products of oleoyl- (POPC), lineloyl- (PLPC) and arachidonoyl-palmitoyl phosphatidylcholine (PAPC). The peroxidation products separated included products resulting from the insertion of oxygen atoms in the sn-2 chain (long-chain), and products with the sn-2 chain shortened resulting from cleavage of oxygen-centered radicals (short-chain). Among long-chain products were the keto, hydroxy, hydroperoxide and poly-hydroxy derivatives, while short-chain products included dicarboxylic acids, aldehydes and hydroxy-aldehydes. Separation of long-chain products formed in each phosphatidylcholine was observed, and the reconstructed ion chromatogram of each ion showed an increase in the number of peaks with the increase in the number of oxygen atoms inserted into the phospholipid. Separation of short-chain products took place according to the functional group present at the sn-2 moiety that allowed the elution of dicarboxylic acids distinct from aldehydes. Separation between isomeric structures that were present in short- and long-chain products was also achieved.  相似文献   

12.
LC with MS detection was optimized for sensitive and selective analysis of main classes of natural dyes used in ancient times for dyeing textiles -- red anthraquinoids, yellow flavonoids, and known degradation products of flavonols -- hydroxybenzoic acids. Fragmentation patterns of both negative and positive molecular ions for the above mentioned compounds were investigated. Three acquisition modes of MS analysis: scanning, SIM, and multiple reaction monitoring (MRM) in both positive and negative ion modes were optimized and compared with each other and with the UV-Vis diode-array detection. Even though in the applied chromatographic system formic acid was used in the mobile phase, SIM in the negative ion mode was the most selective and sensitive detection for all the investigated compounds when both mixtures of standards and analysis of extracts from archeological samples were concerned, with one exception -- alizarin, for which MS detection in positive ion mode was more sensitive. Detection limits obtained with MS detection for all investigated compounds except quinizarin were lower than the ones obtained with the diode-array UV-Vis detection, making MS detection the most suitable tool for the analysis of natural dyes and their degradation products in extracts from archeological samples.  相似文献   

13.
The prerequisites for forensic confirmatory analysis by LC/MS/MS with respect to European Union guidelines are chromatographic separation, a minimum number of two MS/MS transitions to obtain the required identification points and predefined thresholds for the variability of the relative intensities of the MS/MS transitions (MRM transitions) in samples and reference standards. In the present study, a fast, sensitive and robust method to quantify tramadol, chlorpheniramine, dextromethorphan and their major metabolites, O‐desmethyltramadol, dsmethyl‐chlorpheniramine and dextrophan, respectively, in human plasma using ibuprofen as internal standard (IS) is described. The analytes and the IS were extracted from plasma by a liquid–liquid extraction method using ethyl acetate–diethyl‐ether (1:1). Extracted samples were analyzed by ultra‐high‐performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC‐ESI‐MS/MS). Chromatographic separation was performed by pumping the mobile phase containing acetonitrile, water and formic acid (89.2:11.7:0.1) for 2.0 min at a flow rate of 0.25 μL/min into a Hypersil‐Gold C18 column, 20 × 2.0 mm (1.9 µm) from Thermoscientific, New York, USA. The calibration curve was linear for the six analytes. The intraday precision (RSD) and accuracy (RE) of the method were 3–9.8 and ?1.7–4.5%, respectively. The analytical procedure herein described was used to assess the pharmacokinetics of the analytes in 24 healthy volunteers after a single oral dose containing 50 mg of tramadol hydrochloride, 3 mg chlorpheniramine maleate and 15 mg of dextromethorphan hydrobromide. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
QbD is considered an important, fundamental, and integral part of dosage form development. Despite its significance in drug formulations, the knowledge, reference, and guidance for using QbD in analytical science have not been thoroughly documented in the literature. The present study is aimed at bridging the gap between its generated data and the unexplored terrain in formulation science. This study is novel because, for the first time, an exclusive shorter run time UHPLC method for estimating degradation products was developed through the QbD approach, validated, and proved stability indicative. Five degradation impurities were separated and well characterized. Further, the degradation pathway of the anticancer drug nintedanib (NIN) was explored for the first time in the soft gel formulation using tandem quadrupole MS abetted mass identification, and ESI/MS/MS aided structure elucidation was performed. By carefully demonstrating the step-by-step procedure for QbD-based optimization, parameters such as the analytical target profile (ATP) and critical quality attributes (CQAs) were assessed. The risk assessment was performed using failure mode effect analysis (FMEA). Critical method attributes and critical method parameters were identified based on the magnitude of the calculated risk priority number (RPN) value. Designed experiments using 4-factor two-level factorial design monitored three critical quality attributes to arrive at a method operable design space (MODS). The effect of individual method attributes was also analyzed using half-normal and Pareto charts. Control strategies design and RPN values were recalculated based on the DOE output. This RPN value is eventually identified to be significantly smaller and satisfactory within the allowable limit.  相似文献   

15.
A sensitive, accurate and highly stereoselective assay for the simultaneous determination of venlafaxine (VEN) and its equipotent metabolite, O‐desmethyl venlafaxine (ODV), in human plasma was developed and validated. Analytes were simultaneously extracted from plasma using solid‐phase extraction and detected by tandem mass spectrometry in positive ion mode with a turbo ion spray interface. Deuterium‐labeled VEN and ODV were used as internal standards. Chromatographic separation was performed on a Chiral AGP column, using a time programmed gradient flow with a total run time of 16 min. The method has a lower limit of quantitation of 0.60 ng/mL. The assay was linear over a range 0.60–300.00 ng/mL for both the enantiomers of VEN and ODV, respectively, with coefficient of correlation > 0.99. The extraction recoveries were >77.0% on an average for all the four analytes. The analytes were found stable in plasma through three freeze (?15 °C) and thaw cycles and under storage at room temperature for 8 h, and also in mobile phase at 10 °C for 54 h. The method has shown good reproducibility, with intra‐ and inter‐day variation coefficients < 9%, for all the analytes, and has proved to be very reliable for analysis of VEN and its metabolite in clinical study samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The present study was undertaken to investigate the pharmacokinetics of isoliquiritigenin (isoLQ) as determined by the automated dosing/blood sampling (ABS) and traditional manual blood sampling techniques in awake and freely moving mice using combined liquid chromatography tandem mass spectrometry. Pharmacokinetic comparison was conducted by allocating mice into two groups; an ABS group (intravenous study and oral studies, n = 5 each) and a manual group (intravenous and oral studies; n = 5 each). Significant differences in pharmacokinetic parameters (area under the curve and clearances) were observed between ABS and manual groups. This could be mainly due to the blood sampling site difference (via heart puncture in traditional manual group and via carotid artery in ABS groups). The low F of isoLQ could be mainly due to a considerable gastrointestinal and/or hepatic first‐pass effect and not to incomplete absorption. The driving force for distribution and elimination of drugs is its concentration in the arterial blood. Therefore, the ABS method was found to be a useful drug development tool for accelerating the process of preclinical in vivo studies and for obtaining reliable and accurate pharmacokinetic parameters in mice. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A new solid‐phase extraction (SPE) pretreatment method using a home‐made polyvinylpolypyrrolidone‐florisil (PVPP‐F) column was developed for the analysis of patulin in apple and hawthorn products in China. Fifty samples (25 apple juices, 12 apple jams, and 13 hawthorn juices) were prepared using the new method and then analyzed by high performance liquid chromatography with diode array detection (HPLC‐DAD) on an Agela Venusil MP C18 reversed‐phase column (4.6 mm × 250 mm, 5 μm). The cleanup results for all samples using home‐made PVPP‐F column were compared with those obtained using a MycoSep®228 AflaPat column. The correlation coefficient R (0.9998) fulfilled the requirement of linearity for patulin in the concentration range of 2.5–250 μg/kg. The limits of detection (LODs) and quantification (LOQs) of patulin were 3.99 and 9.64 μg/kg for PVPP‐F column, and 3.56 and 8.07 μg/kg for MycoSep®228 AflaPat column, respectively. Samples were spiked with patulin at levels ranging from 25 to 250 μg/kg, and recoveries using PVPP‐F and MycoSep®228 AflaPat columns were in the range of 81.9–100.9% and 86.4–103.9%, respectively. Naturally occurring patulin was found in 2 of 25 apple juice samples (8.0%) and 1 of 13 hawthorn juice samples (7.7%) at concentrations ranging from 12.26 to 36.81 μg/kg. The positive results were further confirmed by liquid chromatography electrospray ionization mass spectrometry (LC‐ESI‐MS).  相似文献   

18.
We report a qualitative liquid chromatography–tandem mass spectrometry (LC/MS/MS) method for the simultaneous analysis of the three known N,N‐dimethyltryptamine endogenous hallucinogens, their precursors and metabolites, as well as melatonin and its metabolic precursors. The method was characterized using artificial cerebrospinal fluid (aCSF) as the matrix and was subsequently applied to the analysis of rat brain pineal gland‐aCSF microdialysate. The method describes the simultaneous analysis of 23 chemically diverse compounds plus a deuterated internal standard by direct injection, requiring no dilution or extraction of the samples. The results demonstrate that this is a simple, sensitive, specific and direct approach to the qualitative analysis of these compounds in this matrix. The protocol also employs stringent MS confirmatory criteria for the detection and confirmation of the compounds examined, including exact mass measurements. The excellent limits of detection and broad scope make it a valuable research tool for examining the endogenous hallucinogen pathways in the central nervous system. We report here, for the first time, the presence of N,N‐dimethyltryptamine in pineal gland microdialysate obtained from the rat. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Pazopanib (PZ), an anti‐cancer drug, was subjected to forced degradation under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions as per International Conference on Harmonization guidelines. A selective stability indicating validated method was developed using a Waters Acquity UPLC HSS T3 (100 × 2.1 mm, 1.7 µm) column in gradient mode with ammonium acetate buffer (10 m m , pH 5.0) and acetonitrile. PZ was found to degrade only in photolytic conditions to produce six transformation products (TPs). All the TPs were identified and characterized by liquid chromatography/atmospheric pressure chemical ionization–quadrupole‐time of flight mass spectrometry experiments in combination with accurate mass measurements. Plausible mechanisms have been proposed for the formation of TPs. In silico toxicity was predicted using TOPKAT and DEREK softwares for all the TPs. The TP, N4‐(2,3‐dimethyl‐2H‐indazol‐6‐yl)‐N4‐methylpyrimidine‐2,4‐diamine, was found to be genotoxic, whereas all other TPs with sulfonamide moiety were hepatotoxic. The data reported here are expected to be of significance as this study foresees the formation of one potential genotoxic and five hepatotoxic degradation/transformation products. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
LC‐MS technique described here is a new way for the separation and direct determination of UV–Vis insensitive inositol phosphates (InsP2‐InsP6). This circumvents the need of radioisotopic labeling and post‐column derivatization techniques. The method involves separation of various enzymatically dephosphorylated derivatives of InsP6 on C18‐column using MeOH/H2O (30:70 v/v) and their identification using electron spray ionization MS in positive ion mode (+pESI‐MS). The LC‐MS studies revealed that the purified phytase from Aspergillus niger van Teighem hydrolyzes InsP6 in a sequential manner leading to InsP2 (InsP2·2Na, tR 4.4–4.54 min, base peak m/z 382.9) as the end product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号