首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
A graph has a -decomposition if its edge set can be partitioned into cycles of length . We show that if , then has a -decomposition, and if , then has a -decomposition, where and (we assume is large and satisfies necessary divisibility conditions). These minimum degree bounds are best possible and provide exact versions of asymptotic results obtained by Barber, Kühn, Lo and Osthus. In the process, we obtain asymptotic versions of these results when is bipartite or satisfies certain expansion properties.  相似文献   

2.
    
Given graphs G and H, and a coloring of the edges of G with k colors, a monochromatic H‐decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a monochromatic graph isomorphic to H. Let be the smallest number ? such that any graph G of order n and any coloring of its edges with k colors, admits a monochromatic H‐decomposition with at most ? parts. Here, we study the function for and .  相似文献   

3.
    
For each , we show that any graph G with minimum degree at least has a fractional Kr‐decomposition. This improves the best previous bounds on the minimum degree required to guarantee a fractional Kr‐decomposition given by Dukes (for small r) and Barber, Kühn, Lo, Montgomery, and Osthus (for large r), giving the first bound that is tight up to the constant multiple of r (seen, for example, by considering Turán graphs). In combination with work by Glock, Kühn, Lo, Montgomery, and Osthus, this shows that, for any graph F with chromatic number , and any , any sufficiently large graph G with minimum degree at least has, subject to some further simple necessary divisibility conditions, an (exact) F‐decomposition.  相似文献   

4.
Define a k-star to be the complete bipartite graph K1,k. In a 2014 article, Hoffman and Roberts prove that a partial k-star decomposition of Kn can be embedded in a k-star decomposition of Kn+s where s is at most 7k?4 if k is odd and 8k?4 if k is even. In our work, we offer a straightforward construction for embedding partial k-star designs and lower these bounds to 3k?2 and 4k?2, respectively.  相似文献   

5.
    
We look at several saturation problems in complete balanced blow‐ups of graphs. We let denote the blow‐up of H onto parts of size n and refer to a copy of H in as partite if it has one vertex in each part of . We then ask how few edges a subgraph G of can have such that G has no partite copy of H but such that the addition of any new edge from creates a partite H. When H is a triangle this value was determined by Ferrara, Jacobson, Pfender, and Wenger in  5 . Our main result is to calculate this value for when n is large. We also give exact results for paths and stars and show that for 2‐connected graphs the answer is linear in n whilst for graphs that are not 2‐connected the answer is quadratic in n. We also investigate a similar problem where G is permitted to contain partite copies of H but we require that the addition of any new edge from creates an extra partite copy of H. This problem turns out to be much simpler and we attain exact answers for all cliques and trees.  相似文献   

6.
    
Given two graphs G and H , an Hdecomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a graph isomorphic to H . Let be the smallest number ? such that any graph G of order n admits an H‐decomposition with at most ? parts. Pikhurko and Sousa conjectured that for and all sufficiently large n , where denotes the maximum number of edges in a graph on n vertices not containing H as a subgraph. Their conjecture has been verified by Özkahya and Person for all edge‐critical graphs H . In this article, the conjecture is verified for the k‐fan graph. The kfan graph , denoted by , is the graph on vertices consisting of k triangles that intersect in exactly one common vertex called the center of the k‐fan.  相似文献   

7.
8.
耿显亚  赵红锦  徐李立 《数学杂志》2017,37(6):1111-1117
本文定义SkG)为G中所有点对之间距离的k次方之和.利用顶点划分的方法得到了直径为dn顶点连通二部图SkG)的下界,并确定了达到下界所对应的的极图.  相似文献   

9.
The problem studied in this paper is to determine e(p, C), the minimum size of a connected graph G with given vertex number p and cut-width C.  相似文献   

10.
    
《Journal of Graph Theory》2018,88(3):411-427
Let be a graph of density p on n vertices. Following Erdős, Łuczak, and Spencer, an m‐vertex subgraph H of G is called full if H has minimum degree at least . Let denote the order of a largest full subgraph of G. If is a nonnegative integer, define Erdős, Łuczak, and Spencer proved that for , In this article, we prove the following lower bound: for , Furthermore, we show that this is tight up to a multiplicative constant factor for infinitely many p near the elements of . In contrast, we show that for any n‐vertex graph G, either G or contains a full subgraph on vertices. Finally, we discuss full subgraphs of random and pseudo‐random graphs, and several open problems.  相似文献   

11.
最大边数的Cordial图的构造   总被引:2,自引:0,他引:2  
刘群  刘峙山 《数学研究》2003,36(4):437-439
对于n阶Cordial图G,本给出G的边数的上确界e^*,并给出边数达到e^*的Cordial图的构造。  相似文献   

12.
A connected graph G =(V, E) is called a quasi-tree graph, if there exists a vertex v_0 ∈ V(G) such that G-v_0 is a tree. Liu and Lu [Linear Algebra Appl. 428(2008) 2708-2714] determined the maximal spectral radius together with the corresponding graph among all quasi-tree graphs on n vertices. In this paper, we extend their result, and determine the second to the fifth largest spectral radii together with the corresponding graphs among all quasi-tree graphs on n vertices.  相似文献   

13.
For a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of Gthat is a tree. Further, for a vertex vV(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of Gthat is a tree, with the extra condition that the tree must contain v. The minimum of t(G) (t(G, v), respectively) over all connected triangle‐free graphs G(and vertices vV(G)) on nvertices is denoted by t3(n) (t(n)). Clearly, t(G, v)?t(G) for all vV(G). In this note, we solve the extremal problem of maximizing |G| for given t(G, v), given that Gis connected and triangle‐free. We show that and determine the unique extremal graphs. Thus, we get as corollary that $t_3(n)\ge t_3^{\ast}(n) = \lceil {\frac{1}{2}}(1+{\sqrt{8n-7}})\rceilFor a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of Gthat is a tree. Further, for a vertex vV(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of Gthat is a tree, with the extra condition that the tree must contain v. The minimum of t(G) (t(G, v), respectively) over all connected triangle‐free graphs G(and vertices vV(G)) on nvertices is denoted by t3(n) (t(n)). Clearly, t(G, v)?t(G) for all vV(G). In this note, we solve the extremal problem of maximizing |G| for given t(G, v), given that Gis connected and triangle‐free. We show that and determine the unique extremal graphs. Thus, we get as corollary that $t_3(n)\ge t_3^{\ast}(n) = \lceil {\frac{1}{2}}(1+{\sqrt{8n-7}})\rceil$, improving a recent result by Fox, Loh and Sudakov. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 206–209, 2010  相似文献   

14.
    
Extremal problems for graph homomorphisms have recently become a topic of much research. Let denote the number of homomorphisms from G to H. A natural set of problems arises when we fix an image graph H and determine which graph(s) G on n vertices and m edges maximize . We prove that if H is loop‐threshold, then, for every n and m, there is a threshold graph G with n vertices and m edges that maximizes . Similarly, we show that loop‐quasi‐threshold image graphs have quasi‐threshold extremal graphs. In the case , the path on three vertices in which every vertex in looped, the authors [5] determined a set of five graphs, one of which must be extremal for . Also in this article, using similar techniques, we determine a set of extremal graphs for “the fox,” a graph formed by deleting the loop on one of the end‐vertices of . The fox is the unique connected loop‐threshold image graph on at most three vertices for which the extremal problem was not previously solved.  相似文献   

15.
We prove that for a connected graph G with maximum degree 3 there exists a bipartite subgraph of G containing almost of the edges of G. Furthermore, we completely characterize the set of all extremal graphs, i.e. all connected graphs G=(V, E) with maximum degree 3 for which no bipartite subgraph has more than of the edges; |E| denotes the cardinality of E. For 2-edge-connected graphs there are two kinds of extremal graphs which realize the lower bound . Received: July 17, 1995 / Revised: April 5, 1996  相似文献   

16.
    
Let k be a fixed integer at least 3. It is proved that every graph of order (2k ? 1 ? 1/k)n + O(1) contains n vertex disjoint induced subgraphs of order k such that these subgraphs are equivalent to each other and they are equivalent to one of four graphs: a clique, an independent set, a star, or the complement of a star. In particular, by substituting 3 for k, it is proved that every graph of order 14n/3 + O(1) contains n vertex disjoint induced subgraphs of order 3 such that they are equivalent to each other. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 159–166, 2007  相似文献   

17.
    
We prove the extremal function for K 9 = minors, where K 9 = denotes the complete graph K 9 with two edges removed. In particular, we show that any graph with n 8 vertices and at least 6 n 20 edges either contains a K 9 = minor or is isomorphic to a graph obtained from disjoint copies of K 8 and K 2 , 2 , 2 , 2 , 2 by identifying cliques of size 5. We utilize computer assistance to prove one of our lemmas.  相似文献   

18.
§ 1 IntroductionThe cutwidth minimization problem for graphs arises from the circuitlayout of VLSIdesigns[1 ] .Chung pointed outthatthe cutwidth often corresponds to the area of the layoutin array layout in VLSI design[2 ] .In the layout models,the cutwidth problem deals withthe number of edges passing over a vertex when all vertices are arranged in a path.For agraph G with vertex set V(G) and edge set E(G) ,a labeling of G is a one-to-one mapping ffrom V(G) to the integers.The cutwid…  相似文献   

19.
20.
    
A book of size b in a graph is an edge that lies in b triangles. Consider a graph G with n vertices and ?n2/4?; + 1 edges. Rademacher proved that G contains at least ?n/2?; triangles, and several authors proved that G contains a book of size at least n/6. We prove the following “linear combination” of these two results. Suppose that and the maximum size of a book in G is less than αn/2. Then G contains at least triangles as n→?. This is asymptotically sharp. On the other hand, for every , there exists β>0 such that G contains at least βn3 triangles. It remains an open problem to determine the largest possible β in terms of α. Our short proof uses the triangle removal lemma, although there is another approach which avoids this. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号