首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Run‐zao‐zhi‐yang (RZZY) capsule, a traditional Chinese medicine formula, is popularly used for the treatment of dermatitis and eczema. However, few studies have been carried out on RZZY and its metabolites. In this study, we developed a three‐step strategy to rapidly characterize the chemical constituents and metabolites of RZZY using ultra‐high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry. A total of 41 chemical components were characterized from RZZY. Among these, there are 11 flavonoids, six alkaloids, six stilbene glycosides, five anthraquinones and 13 other compounds. In addition, 18 prototypes and 35 metabolites were detected in rat plasma, urine and bile. This study offers an applicable approach for high‐throughput profiling and identification of chemical components and metabolites derived from traditional Chinese medicine formula in vivo, and also provides essential data for exploring bioactive ingredients and action mechanisms of RZZY.  相似文献   

2.
Fu‐Ke‐Zai‐Zao pills, the famous traditional Chinese medicine formula, composed of 42 medicinal herbs, have been widely used to treat various gynecological diseases. However, the chemical constituents and metabolic profiling of Fu‐Ke‐Zai‐Zao pills remain largely unknown, which hampers improvement of the quality control and pharmacological elucidation of this formula. In the present study, a sensitive and selective ultra high performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry method was developed to separate and identify the comprehensive chemical constituents of Fu‐Ke‐Zai‐Zao pills. According to the results, a total of 83 compounds were identified, including phenylpropionic acids, flavonoids, terpenoids, triterpene saponins, and phthalides, and 81 compounds were first reported in Fu‐Ke‐Zai‐Zao pills. Moreover, the absorbed components and metabolites in rat plasma after intragastric administration of Fu‐Ke‐Zai‐Zao pills were also detected by the same analytical method. A total of 36 compounds were identified, including 21 prototypes and 15 metabolites. The latter were generated through the metabolic pathways of methylation and glucuronidation, and glucuronidated metabolites were the main constituents in the plasma. This is the first systematic study on the chemical constituents and metabolic profiling of Fu‐Ke‐Zai‐Zao pills, and the results provide valuable chemical information for further elucidating pharmacological effects and mechanism of action of Fu‐Ke‐Zai‐Zao pills.  相似文献   

3.
Qi‐Jing‐Sheng‐Bai granule is an effective traditional Chinese medicine formula that has been widely used for the treatment of leukopenia post radiotherapy or chemotherapy. However, its chemical constituents were still unclear, which hindered interpreting bioactive constituents and studying integrative mechanisms. In this study, we developed a three‐step strategy to characterize the chemical constituents and metabolites of Qi‐Jing‐Sheng‐Bai by using ultra‐high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry. As a result, a total of 143 compounds, including 56 flavonoids, 51 saponins, and 36 other compounds, of which contained six pairs of isomers, were tentatively identified and characterized via reference standards and by comparing mass spectrometry data with literature. After oral administration of 15 g/kg Qi‐Jing‐Sheng‐Bai, a number of 42 compounds including 24 prototype compounds and 18 metabolites have been detected in the serum of rats. This work serves as the first reference for Qi‐Jing‐Sheng‐Bai chemical components and metabolites. Moreover, it provided a rapid and valid analytical strategy for characterization of the chemical compounds and metabolites of traditional Chinese medicine formula.  相似文献   

4.
Traditional Chinese medicine is the clinical experience accumulated by Chinese people against diseases. Da‐Bu‐Yin‐Wan is a famous traditional Chinese medicine formula consisting of Phellodendri amurensis Rupr., Anemarrhenae asphodeloides Bge., Radix Rehmanniae Preparata and Chinemys reevesii . In this study, ultra high performance liquid chromatography with electrospray ionization quadrupole time‐of‐flight high‐definition mass spectrometry with the control software of Masslynx (V4.1) was established for comprehensive screening and identification of the chemical constituents and serum metabolites of Da‐Bu‐Yin‐Wan in vivo and in vitro. Consequently, 70 peaks in the methanol extract from Da‐Bu‐Yin‐Wan and 38 peaks absorbed into rat blood were characterized. The 70 constituents in vitro included alkaloids, flavonoids, polysaccharide, limonoids, flavonoid, etc. And the 38 constituents consist of 22 absorbed prototypes and 16 metabolites of Da‐Bu‐Yin‐Wan absorbed in vivo. We fully clarified the chemical constituents of Da‐Bu‐Yin‐Wan and provided a scientific strategy for the screening and characterization of the chemical constituents and metabolites of traditional Chinese medicine in vitro and in vivo.  相似文献   

5.
Qixianqingming granules (QXQM) comprise a traditional Chinese medicine (TCM) formula that was developed based on the combination of TCM theory and clinical practice. This formula has been proven to effectively treat asthma. In this study, an analytical procedure using ultraperformance liquid chromatography, coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry, was established for the rapid separation and sensitive identification of the chemical components in QXQM and its metabolites in serum of rats. Seventy‐two compounds were systematically identified in QXQM, including flavonoids, terpenoids, anthraquinones, phenylethanoid glycosides, stilbenes, alkaloids, and organic acids. Thirteen prototype compounds and 29 metabolites were detected in the serum of rats. The results provided fundamental information for further studying the mechanisms and clinical application of QXQM.  相似文献   

6.
Jiao‐Tai‐Wan, which is composed of Coptis Rhizoma and Cinnamon Cortex, has been recently used to treat type 2 diabetes. Owing to lack of data on its prototypes and metabolites, elucidation of the pharmacological and clinically safe levels of this formula has been significantly hindered. To screen more potential bioactive components of Jiao‐Tai‐Wan, we identified its multiple prototypes and metabolites in the plasma of type 2 diabetic rats by ultra high performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry. A total of 47 compounds were identified in the plasma of type 2 diabetic rats, including 22 prototypes and 25 metabolites, with alkaloids constituting the majority of the absorbed prototype components. In addition, this is the first study to detect vanillic acid, gallic acid, chlorogenic acid, protocatechuic acid, 2‐hydroxycinnamic acid, 3‐hydroxycinnamic acid, 4‐hydroxycinnamic acid, and 2‐methoxy cinnamic acid after oral administration of Jiao‐Tai‐Wan. The prototypes from Jiao‐Tai‐Wan were extensively metabolized by demethylation, hydroxylation, and reduction in phase Ⅰ metabolic reactions and by methylation or conjugation of glucuronide or sulfate in phase Ⅱ reactions. This is the first systematic study on the components and metabolic profiles of Jiao‐Tai‐Wan in vivo. This study provides a useful chemical basis for further pharmacological research and clinical application of Jiao‐Tai‐Wan.  相似文献   

7.
8.
In this study, a rapid and sensitive method by ultra‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry, and MetabolynxTM software with mass defect filter technique was developed for screening and identification of the metabolites in rat plasma after oral administration of Shen‐Song‐Yang‐Xin capsule (SSYX). A total of 92 SSYX‐related xenobiotics were identified or characterized, including 45 prototypes and 47 metabolites. The results indicated that the absorbed constituents and metabolites mainly came from benzocyclooctadiene lignans, tanshinones, isoquinoline alkaloids and triterpenic acids, while phase I reactions (e.g. hydrogenation, hydroxylation, demethylation) and phase II reaction (glucuronidation) were the main metabolic pathways of these ingredients in SSYX. This is the first study on metabolic profiling of SSYX in rat plasma after oral administration. Furthermore, these findings provide useful information on the potential bioactive compounds, and enhance our understanding of the action mechanism of SSYX. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Xin‐Sheng‐Hua granule, a representative formula for postpartum hemorrhage, has been used clinically to treat postpartum diseases. Its main bioactive components comprise aromatic acids, phthalides, alkaloids, flavonoids, and gingerols among others. To investigate the changes in main bioactive constituents in its seven single herbs before and after compatibility, a rapid, simple, and sensitive method was developed for comparative analysis of 27 main bioactive components by using ultrahigh‐performance liquid chromatography with triple quadrupole electrospray tandem mass spectrometry for the first time. The sufficient separation of 27 target constituents was achieved on a Thermo Scientific Hypersil GOLD column (100 mm × 3 mm, 1.9 μm) within 20 min under the optimized chromatographic conditions. Compared with the theoretical content, the observed content of each analyte showed remarkable differences in Xin‐Sheng‐Hua granule except thymine, p‐coumaric acid, senkyunolide I, senkyunolide H, and ligustilide; the total contents of 27 components increased significantly, and the content variation degrees for the different components were gingerols > flavonoids > aromatic acids > alkaloids > phthalides. The results could provide a good reference for the quality control of Xin‐Sheng‐Hua granule and might be helpful to interpret the drug interactions based on variation of bioactive components in formulae.  相似文献   

10.
Keke capsule as a traditional Chinese medicine formulation is used to relieve cough, for analgesia and to reduce bronchial asthma. The multi‐components are absorbed into the blood and brain after oral administration of Keke capsule, with no systematic investigation so far. A reliable and rapid UPLC–QTOF–MSE combined with a data processing software platform was used to characterize the components of Keke capsule and simultaneously identify bioactive components in blood and brain tissues in rat after oral administration. Consequently, a total of 41 components of Keke capsule, including alkaloids, flavone, flavonols, triterpene, lignanoid, organic acids, glycosides and coumarin were identified. Twenty‐one components were found in plasma, including 18 prototypes and three metabolites; 15 components were found in brain tissues, including 10 prototypes and five metabolites. Alkaloids and flavonoids in Keke capsule were the main components which were absorbed into blood. The main alkaloids of Keke capsule can pass through the blood–brain barrier and show different distribution tendencies in brain tissues. The main components of keke capsule was simultaneously analyzed by throughput analysis, and the corresponding bioactive components were examined by blood‐brain barrier in the rat after oral administration of the capsule.  相似文献   

11.
12.
The calyces of Physalis alkekengi var. franchetii (Chinese Lantern, JDL) are well‐known as traditional Chinese medicine owing to its various therapeutic effects. However, the bioactive constituents responsible for the pharmacological effects of JDL and their metabolites in vivo are still unclear to date. In this paper, an ultra‐high‐pressure liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry (UHPLC/Q‐TOF‐MS/MS) method was established to identify absorbed constituents and in vivo metabolites in rat biological fluids after oral administration of JDL. Based on the proposed strategy, 33 compounds were observed in dosed rat biosamples. Twelve of 33 compounds were indicated as prototype components of JDL, and 21 compounds were predicted to be metabolites of JDL. Finally, the metabolic pathways were proposed, which were glucuronidation, sulfation, methylation and dehydroxylation for flavonoid constituents and sulfonation and hydroxylation for physalin consitituents. This is the first systematic study on the absorbed constituents and metabolic profiling of JDL and will provide a useful template for screening and characterizing the ingredients and metabolites of traditional Chinese medicine.  相似文献   

13.
Suan‐Zao‐Ren granule is widely used to treat insomnia in China. However, because of the complexity and diversity of the chemical compositions in traditional Chinese medicine formula, the comprehensive analysis of constituents in vitro and in vivo is rather difficult. In our study, an ultra high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry and the PeakView® software, which uses multiple data processing approaches including product ion filter, neutral loss filter, and mass defect filter, method was developed to characterize the ingredients and rat serum metabolites in Suan‐Zao‐Ren granule. A total of 101 constituents were detected in vitro. Under the same analysis conditions, 68 constituents were characterized in rat serum, including 35 prototype components and 33 metabolites. The metabolic pathways of main components were also illustrated. Among them, the metabolic pathways of timosaponin AI were firstly revealed. The bioactive compounds mainly underwent the phase I metabolic pathways including hydroxylation, oxidation, hydrolysis, and phase II metabolic pathways including sulfate conjugation, glucuronide conjugation, cysteine conjugation, acetycysteine conjugation, and glutathione conjugation. In conclusion, our results showed that this analysis approach was extremely useful for the in‐depth pharmacological research of Suan‐Zao‐Ren granule and provided a chemical basis for its rational.  相似文献   

14.
In this work, ultra‐performance LC with ESI quadrupole TOF‐MS (UPLC–ESI‐Q‐TOF‐MS) and automated MetaboLynx analysis was used to rapidly separate and identify the chemical constituents of Danggui San, a traditional Chinese medical formula. The analysis was performed on a Waters UPLC BEH C18 column using a gradient elution system. A hyphenated ESI and Q‐TOF analyzer was used for the determination of the accurate mass of the protonated or deprotonated molecule and fragment ions in both positive and negative modes. Based on retention times, accurate mass, and the mass spectrometric fragmentation characteristics, a total of 47 compounds distributed over the chemical groups of phthalides, flavonoids, monoterpene glycosides, sesquiterpenoids, phenolics, and alkaloids, were simultaneously separated within 18 min and identified or tentatively elucidated in Danggui San for the first time. UPLC–ESI‐Q‐TOF‐MS analysis revealed the complexity of the chemical composition of this formula. The method developed is rapid, accurate, reliable, and highly sensitive to characterize the chemical constituents of Danggui San.  相似文献   

15.
“Dogel ebs” was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp‐heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the metabolic transformation of “Dogel ebs” in vivo was still unclear. To explore the mechanism of “Dogel ebs,” the metabolites in plasma, bile, and urine samples were investigated. A fast positive and negative ion switching technology was used for the simultaneous determination of flavonoids and alkaloids in “Dogel ebs” in a single run. And a target‐group‐change coupled with mass defect filtering strategy was utilized to analyze the collected data. 89 parent compounds and 82 metabolites were characterized by high‐performance liquid chromatography with quadrupole exactive Orbitrap mass spectrometry. Both phase I and phase II metabolites were observed and the metabolic pathways involved in oxidation, demethylation, acetylation, and glucuronidation. 69 metabolites of “Dogel ebs,” including three hydroxyls bonding xanthohumol, formononetin‐7‐O‐glucuronide, 2′‐hydroxyl‐isoxanthohumol decarboxylation metabolite, oxysophocarpine dehydrogen, 9α‐hydroxysophoramine‐O‐glucuronide, etc. were reported for the first time.  相似文献   

16.
Xiao‐Qing‐Long‐Tang is a traditional Chinese formula used for the treatment of cold syndrome, bronchitis, and nasal allergies for thousands of years. However, the in vivo integrated metabolism of its multiple components and the active chemical constituents of Xiao‐Qing‐Long‐Tang remain unknown. In this study, a method using ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry was established for the detection and identification of the metabolites in human and rat urine after oral administration of Xiao‐Qing‐Long‐Tang. A total of 19 compounds were detected or tentatively identified in human urine samples, including eight prototypes and 11 metabolites. Also, a total of 50 compounds were detected or tentatively identified in rat urine samples, including 15 prototypes and 35 metabolites detected with either a highly sensitive extracted ion chromatogram method or the MSE determination using Mass Fragment software. Our results indicated that phase Ⅱ reactions (e.g. glucuronidation and sulfation) were the main metabolic pathways of flavones, while phase I reactions (e.g. demethylation and hydroxylation) were the major metabolic reaction for alkaloids, lignans, and ginger essential oil. This investigation provided important structural information on the metabolism of Xiao‐Qing‐Long‐Tang and provided evidence to obtain a more comprehensive metabolic profile.  相似文献   

17.
Xuanmai Ganjie Granules (XMGJ), a widely used Chinese herbal formula in the clinic, is used for treatment of sore throats and coughs. Despite the chemical constituents having been clarifying by our previous studies, both of the metabolism and pharmacokinetic studies of XMGJ are unclear. This study aimed to explore the disposition process of XMGJ in vivo. A sensitive and selective ultra‐high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry (UPLC–Q‐TOF–MS) method was developed to analyze the absorbed components and metabolites in rat plasma and urine after oral administration of XMGJ. A total of 42 absorbed components, including 16 prototype compounds and 26 metabolites, were identified or tentatively characterized in rat plasma and urine after oral administration of XMGJ. Moreover, the pharmacokinetic studies of five compounds of XMGJ were investigated using ultra‐high liquid chromatography with tandem mass spectrometry method. The results indicated that liquiritin, harpagoside, glycyrrhetic acid, liquiritigenin, formononetin and their metabolites might be the major components involved in the pharmacokinetic and metabolism process of XMGJ. This research showed a comprehensive investigation of XMGJ in vivo, which could provide a meaningful basis for further material basis and pharmacological as well as toxicological research.  相似文献   

18.
Tianma‐Gouteng granule (TGG), a Chinese herbal formula preparation, is clinically used for the treatment of cardio‐cerebrovascular diseases such as hypertension, cerebral ischaemia, acute ischaemic stroke and Parkinson's disease. Although few reports have been published concerning the absorbed prototype components of TGG, the possible metabolic pathways of TGG in vivo remain largely unclear. In this study, a method using UPLC–Q/TOF MS was established for the detection and identification of the absorbed prototype components and related metabolites in rat plasma and bile after oral administration of TGG at high and normal clinical dosages. A total of 68 components were identified or tentatively identified in plasma and bile samples, including absorbed prototypes and their metabolites. The major absorbed components were gastrodin, isorhynchophylline, rhynchophylline, isocorynoxeine, corynoxeine, geissoschizine methyl ether baicalin, baicalein, wogonoside, wogonin, geniposidic acid, leonurine, 2,3,5,4′‐tetrahydroxystilbene‐2‐Oβ‐d ‐glucoside and emodin. The main metabolic pathways of these components involved phase I (isomerization, hydrolysis and reduction) and phase II (glucuronidation and sulfation) reaction, and the phase II biotransformation pathway was predominant. The present study provides rich information on the in vivo absorption and metabolism of TGG, and the results will be helpful for further studies on the pharmacokinetics and pharmacodynamics of TGG.  相似文献   

19.
Zi Shen Wan is a typical formula consisting of three herbs, Phellodendri Amurensis Cortex, Rhizoma Anemarrhenae, and Cortex Cinnamomi, and has been widely used for treating prostatitis and infection diseases. However, it lacks in‐depth research of the constituents of Zi Shen Wan in vivo and in vitro. In this work, ultra high performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry and MassLynx software was established to characterize the chemical compositions of Zi Shen Wan in vivo and in vitro. In total, 92 peaks were characterized in vitro and 33 peaks were characterized in vivo based on mass spectrometry and tandem mass spectrometry data. Among the 33 compounds characterized in rat plasma, 22 prototype components absorbed in rat serum and 11 metabolites were identified in vivo. This work was fully reports the chemical constituents of traditional Chinese formula of Zi Shen Wan, it demonstrated that ultra high performance liquid chromatography combined with quadrupole time‐of‐flight mass spectrometry coupled to MassLynx software and multivariate data processing approach could be successfully applied for rapid screening and comprehensive analysis of chemical constituents in vitro and prototype components or metabolites in vivo of traditional Chinese medicine.  相似文献   

20.
High‐resolution mass spectrometry has been a powerful tool for the research of chemical constituents in traditional Chinese medicine (TCM) formulas. However, the chromatographic peaks were difficult to discriminate clearly in data collection or analysis because of the complexity and the greatly different content of the constituents in TCM formula, which increased the difficulty of identification. In this study, a high‐performance liquid chromatography coupled with linear ion trap‐Orbitrap mass spectrometry based strategy focused on the comprehensive identification of TCM formula constituents was developed. Identification was carried out from a high dose of medicinal materials to equivalent dose of formula. Meanwhile, combined with mass spectrometry data, chromatographic behaviors, reference standards and previous reports, the identification of constituents in Xiang‐Sha‐Liu‐Jun‐Zi‐Jia‐Jian granules was described. 169 compounds were unambiguously or tentatively characterized, mainly including flavonoids, alkaloids, triterpenic acids, triterpene saponins, lactones, sesquiterpenoids and some other compounds. Among them, 11 compounds were unambiguously confirmed by comparing with reference standards. These results demonstrated that the method was effective and reliable for comprehensive identification of constituents of Xiang‐Sha‐Liu‐Jun‐Zi‐Jia‐Jian granules extracts and reveal the material basis of its therapeutic effects. This strategy might propose a research idea for the characterization of multi‐constituents in TCM formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号