共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, sensitive and rapid assay method has been developed and validated as per regulatory guidelines for the estimation of enasidenib on mouse dried blood spots (DBS) using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The method employs liquid extraction of enasidenib from DBS disks of mouse whole blood followed by chromatographic separation using 0.2% formic acid–acetonitrile (25:75, v/v) at a flow rate of 1.0 mL/min on an Atlantis dC18 column with a total run time of 2.0 min. The MS/MS ion transitions monitored were m/z 474.0 → 267.1 for enasidenib and m/z 309.2 → 251.3 for the internal standard (warfarin). The assay was linear in the range of 1.01 – 3044 ng/mL. The within‐run and between‐run precisions were in the range of 3.18 – 9.06 and 4.66 – 8.69%, respectively. Stability studies showed that enasidenib was stable on DBS cards for 1 month. This novel method has been applied to analyze the DBS samples of enasidenib obtained from a pharmacokinetic study in mice. 相似文献
2.
de Boer T Wieling J Meulman E Reuvers M Renkema G den Daas I van Iersel T Wemer J Chen L 《Biomedical chromatography : BMC》2011,25(10):1112-1123
An early clinical development study (phase I) was conducted to determine the usefulness of dried blood spot (DBS) sampling as an alternative to venous sampling for phenotyping and genotyping of CYP450 enzymes in healthy volunteers. Midazolam (MDZ) was used as a substrate for phenotyping CYP3A4 activity; the concentrations of MDZ and its main metabolite 1'-hydroxymidazolam (1-OH MDZ) were compared between the DBS method from finger punctures, plasma and whole blood (WB), drawn by venipuncture, whereby several methodological parameters were studied (i.e. punch width, amount of dots analyzed and storage time stability). Genotyping between DBS and venous WB samples was compared for CYP2D6 (*3, *4, *6), CYP2C19 (*2, *3), CYP3A4 (*1B) and CYP3A5 (*3C). In addition, the subject's and phlebotomist's satisfaction with venous blood sampling compared with the DBS method was evaluated using a standardized questionnaire. An LC-MS/MS method for the quantification of the MDZ and 1-OH MDZ concentrations in DBS samples was developed and validated in the range of 0.100-100 ng/mL. No compromises were made for the limits of quantification of the DBS-LC-MS/MS method vs the authentic plasma and WB methods. 相似文献
3.
Dried Plasma Spot Based LC–MS/MS Method for Monitoring of Meropenem in the Blood of Treated Patients
Haiwei Cao Yi Jiang Shaomin Wang Haihuan Cao Yanyan Li Jing Huang 《Molecules (Basel, Switzerland)》2022,27(6)
Meropenem (MER) is widely used to treat complicated and serious infections. Therapeutic drug monitoring (TDM) provides a valid clinical tool to avoid suboptimal concentrations and dose–related adverse reactions. However, TDM seems to face challenges since the limited stability of MER in plasma makes transport difficult between clinics and laboratories. Dried plasma spot (DPS) sampling is an attractive but underutilized method for TDM that has the desired features of easy collection, storage, and transport, and overcomes known hematocrit (HCT) issues in dried blood spot (DBS) analysis. This study was designed to investigate a DPS–based liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for quantification of MER. The method was developed and validated for DPS and wet plasma samples. Calibration curves were linear (R2 > 0.995) over the concentration range of 0.5–50 µg/mL. Overall accuracy and precision did not exceed 15% and no significant matrix effect was observed. MER has been more stable in DPS than in wet plasma samples. A comparison of DPS and wet plasma concentrations was assessed in 32 patients treated with MER. The results showed that there was no significant difference between the two methods. So the DPS method developed in this study is appropriate and practical for the monitor of MER in the daily clinical laboratory practice. 相似文献
4.
Ping Gu Ying Ding Dezhu Sun Taijun Hang Wenying Liu Li Ding 《Biomedical chromatography : BMC》2010,24(4):420-425
Henatinib maleate (R,Z)‐2‐[(5‐fluoro‐1,2‐dihydro‐2‐oxo‐3H‐indol‐3‐ylidene) methyl]‐5‐(2‐hydroxy‐3‐morpholinopropyl)‐3‐methyl‐5,6,7,8‐tetrahydro‐1H‐pyrrolo[3,2‐c] azepin‐4‐ketone maleate is a potent inhibitor of vascular endothelial growth factor receptors, and is currently under preclinical evaluation as an anticancer drug. A novel method for the quantification of henatinib maleate in rat plasma using high performance liquid chromatography–tandem mass spectrometry has been developed. The analyte (henatinib maleate) and internal standard (papaverine hydrochloride) were extracted from 50 μL of rat plasma by protein precipitation and separated on a C18 column using a mixture of 25 mm ammonium acetate buffer : methanol : acetonitrile (35 : 50 : 15, v/v/v) as mobile phase with a run time of 4.5 min. The detection was performed by means of triple quadrupole mass spectrometer equipped with an ESI interface operating in the multiple‐reaction monitoring mode. A linear response was observed over the concentration range 5.0–1000 ng/mL. The limit of quantification was 5.0 ng/mL. Both intra‐ and inter‐day precision, defined as relative standard deviation, were within 9.7%. Accuracy, defined as relative error, was within ± 3.1%. The developed method was successfully applied to preclinical pharmacokinetic studies of henatinib maleate in rat after a single oral administration of the drug. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
Lukáš Chytil Josef Cvačka Věra Marešová Branislav Štrauch Jiří Widimský Jr Martin Štícha Ondřej Slanař 《Journal of mass spectrometry : JMS》2010,45(10):1179-1185
Rilmenidine is an alpha 2 adrenoreceptor agonist used in the treatment of mild and moderate hypertension. In this study, a fast and accurate liquid chromatographic method with tandem mass spectrometric detection has been validated in order to assure quantification of rilmenidine in human serum. The fragmentation pathway of protonated rilmenidine was studied using high‐resolution mass spectrometry (HRMS). This study compared selectivity, linearity, accuracy, precision, extraction efficiency, matrix effect and sensitivity using common liquid–liquid extraction (LLE) and solid‐phase extraction (SPE) procedures. The limit of quantitation for both extraction techniques was 0.1 ng/ml. Several differences between the LLE and SPE have been observed in terms of linearity, accuracy, precision and matrix effect. Additionally, the advantages of SPE included less manual work load and increased recovery of rilmenidine in human serum to approximately 80% (LLE, 57%). The developed method involving SPE was found to be accurate (relative error (RE) < 5%), reproducible (relative standard deviation, RSD < 7%), robust and suitable for quantitative analysis of rilmenidine in serum samples obtained from patients under antihypertensive treatment. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
6.
Suresh P. Sulochana Prasanthi Daram Nuggehally R. Srinivas Ramesh Mullangi 《Biomedical chromatography : BMC》2019,33(1)
An overview of published dried blood spot (DBS) methods for the quantitation of various classes of anticancer drugs from clinical and preclinical studies is presented. The increased reporting of DBS methods in the literature for quantitation of various classes of drugs is a testimony to their utility in bioanalytical applications. While DBS offers several advantages as compared with conventional wet sampling techniques, there remain a number of nuances that may impede the assay adaptability of DBS method in routine quantitative bioanalysis. This review covers several case studies of DBS application in the quantitation of anticancer drugs. Some perspectives are provided on the optimization of the DBS method with respect to the selection of DBS card, spot volume, hematocrit effect and other regular validation parameters, which are essential in quantitative bioanalysis. Some thoughts are provided on the existing gaps in the DBS method and possible remedial measure(s) to address such gaps. Although DBS methods have great potential, there is the need for a global consensus including regulatory support on the type of validation experiments to be performed to support quantitative data. 相似文献
7.
Refat M. Nimer Khalid M. Sumaily Arwa Almuslat Mai Abdel Jabar Essa M. Sabi Mohammad A. Al-Muhaizea Anas M. Abdel Rahman 《Molecules (Basel, Switzerland)》2022,27(12)
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle loss, leading to difficulties in movement. Mutations in the DMD gene that code for the protein dystrophin are responsible for the development of DMD disorder, where the synthesis of this protein is completely halted. Therefore, circulating dystrophin protein could be a promising biomarker of DMD disease. Current methods for diagnosing DMD have sensitivity, specificity, and reproducibility limitations. Herein, a quantitative liquid chromatography–tandem spectrometry (LC–MS/MS) technique in multiple reaction monitoring (MRM) mode was designed and validated for accurate dystrophin protein measurement in a dried blood spot (DBS). The method was successfully validated on the basis of international guidelines regarding calibration curves, precision, and accuracy. In addition, patients and healthy controls were used to test the amount of dystrophin protein circulating in DBS samples as a potential biomarker for DMD disorders. DMD patients were found to have considerably lower levels than controls. To the best of our knowledge, this is the first study to report dystrophin levels in DBS through LC–MS/MS as a diagnostic marker for DMD to the proposed MRM method, providing a highly specific and sensitive approach to dystrophin quantification in a DBS that can be applied in DMD screening. 相似文献
8.
《Biomedical chromatography : BMC》2017,31(4)
This study describes the development of simple, rapid and sensitive liquid chromatography tandem mass spectrometry method for the simultaneous analysis of doxorubicin and its major metabolite, doxorubicinol, in mouse plasma, urine and tissues. The calibration curves were linear over the range 5–250 ng/mL for doxorubicin and 1.25–25 ng/mL for doxorubicinol in plasma and tumor, over the range 25–500 ng/mL for doxorubicin and 1.25–25 ng/mL for doxorubicinol in liver and kidney, and over the range 25–1000 ng/mL for doxorubicin and doxorubicinol in urine. The study was validated, using quality control samples prepared in all different matrices, for accuracy, precision, linearity, selectivity, lower limit of quantification and recovery in accordance with the US Food & Drug Administration guidelines. The method was successfully applied in determining the pharmaco‐distribution of doxorubicin and doxorubicinol after intravenously administration in tumor‐bearing mice of drug, free or nano‐formulated in ferritin nanoparticles or in liposomes. Obtained results demonstrate an effective different distribution and doxorubicin protection against metabolism linked to nano‐formulation. This method, thanks to its validation in plasma and urine, could be a powerful tool for pharmaceutical research and therapeutic drug monitoring, which is a clinical approach currently used in the optimization of oncologic treatments. 相似文献
9.
《液相色谱法及相关技术杂志》2012,35(12):786-793
AbstractAn LC-MS/MS method for analysis of daptomycin in dried blood spot (DBS) was established. The DBS samples were prepared by spotting one droplet of blood onto absorbent paper, and were left to dry at room temperature. The DBS samples were extracted with water followed by deproteinization with acetonitrile. A Hypersil GOLD aQ column was applied to chromatographically separate the analyte, and mobile phase at a flow rate of 0.3 mL/min consisted of methanol and 0.1% formic acid. Detection of analyte was performed on a triple quadrupole mass spectrometer in positive mode, and the mass spectrometer was manipulated in selective reaction monitoring (SRM) mode. The SRM transitions m/z 810.9→811.1 and 810.9→640.8 for quantification and qualification of daptomycin and m/z 837.4→679.4 and 837.4→558.3 for roxithromycin used as internal standard were monitored. The calibration curves covering the range of 1–200 μg/mL exhibited good linearity, and lower limit of quantification (LLOQ) was 1 µg/mL for daptomycin in DBS. The proposed method was fully validated, and hematocrit effect on the quantification of daptomycin in DBS was not obvious. The proposed DBS method was non-invasive and required collection of a micro-volume blood, and was successfully utilized to a pharmacokinetics study in seriously ill patients. 相似文献
10.
《Biomedical chromatography : BMC》2018,32(9)
A rapid, sensitive and reproducible LC–MS/MS method was developed and validated to determine iguratimod in human plasma. Sample preparation was achieved by protein precipitation with acetonitrile. Chromatographic separation was operated on an Ultimate® XB‐C18 column (2.1 × 50 mm, 3.5 μm, Welch) with a flow rate of 0.400 mL/min, using a gradient elution with acetonitrile and water which contained 2 mm ammonium acetate and 0.1% formic acid as the mobile phase. The detection was performed on a Triple Quad™ 5500 mass spectrometer coupled with an electrospray ionization interface under positive‐ion multiple reaction monitoring mode with the transition ion pairs of m/z 375.2 → 347.1 for iguratimod and m/z 244.3 → 185.0 for agomelatine (the internal standard), respectively. The method was linear over the range of 5.00–1500 ng/mL with correlation coefficients ≥0.9978. The accuracy and precision of intra‐ and inter‐day, dilution accuracy, recovery and stability of the method were all within the acceptable limits and no matrix effect or carryover was observed. As a result, the main pharmacokinetic parameters of iguratimod were as follows: Cmax, 1074 ± 373 ng/mL; AUC0–72, 13591 ± 4557 ng h/mL; AUC0–∞, 13,712 ± 4613 ng h/mL; Tmax, 3.29 ± 1.23 h; and t1/2, 8.89 ± 1.23 h. 相似文献
11.
Jinhang Li Yanhong Shi Yan Xu Li Yang Zhengtao Wang Han Han Rui Wang 《Biomedical chromatography : BMC》2019,33(10)
Several chemical and biological studies have revealed R,S‐goitrin as the main bioactive constituent of Isatis indigotica Fort., responsible for antiviral antiendotoxin activity; however, few pharmacokinetic studies have been conducted. To comprehend the kinetics of R,S‐goitrin and promote its curative application, a rapid and sensitive UHPLC–MS/MS method was developed. The selected reaction monitoring transitions were m/z 130.0 → 70.0 for R,S‐goitrin and m/z 181.1 → 124.0 for the internal standard in a positive‐ion mode. The established UHPLC–MS/MS method achieved good linearity for R,S‐goitrin at 10–2000 ng/mL. The intra‐ and interday accuracy levels were within ±9.7%, whereas the intraday and interday precision levels were <11.3%. The extraction recovery, stability and matrix effect were within acceptable limits. The validated method was successfully applied for the pharmacokinetic analysis of R,S‐goitrin in rats after oral administration. Moreover, a total of six metabolites were structurally identified through UHPLC–Q/TOF–MS. The proposed metabolic pathways of R,S‐goitrin in rats involve demethylation, acetylation, glutathionylation and oxygenation. 相似文献
12.
A simple and reliable liquid chromatography–mass spectrometry (LC–MS) method was developed for simultaneous determination of saikosaponin A, saikosaponin B1, saikosaponin C, saikosaponin D and saikosaponin F in rat plasma using glycyrrhetinic acid as an internal standard (IS). The separation was operated on a Waters BEH C18 column. The mobile phases of gradient elution consisted of acetonitrile (A) and 0.1% aqueous acetic acid (B). The mass spectrometric detection was accomplished in multiple reaction monitoring mode. The five saponins displayed good linearity (r2 > 0.9996). The lower limits of quantitation of saikosaponin A, saikosaponin B1, saikosaponin C, saikosaponin D and saikosaponin F were determined to be 2.9, 2.3, 3.5, 2.9 and 3.1 ng/mL, respectively. Moreover, the intra‐ and inter‐day precisions of the five saponins showed an RSD within 2.96%, whereas the accuracy (RE) ranged from ?2.28 to 2.78%. Finally, the developed method was fully validated and applied to a comparative pharmacokinetic study of the five bioactive saponins in rats following oral administration of crude and vinegar‐processed Bupleurum scorzonerifolium. 相似文献
13.
A sensitive, selective and rapid ultra‐performance liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of flavokawain B in rat plasma using myrislignan as an internal standard. Sample preparation was accomplished through a protein precipitation extraction process. Chromatographic resolution of flavokawain B and the IS was achieved on an Agilent XDB‐C18 column (2.1 × 100 mm, 1.8 μm) using a gradient mobile phase comprising 0.1% formic acid in water and acetonitrile delivered at a flow rate of 0.5 mL/min. Flavokawain B and the IS eluted at 3.27 and 1.96 min, respectively. The total chromatographic run time was 6.0 min. A linear response function was constructed in the concentration range 0.524–1048 ng/mL. Method validation was performed as per the US Food and Drug Administration guidelines and the results met the acceptance criteria. Intra‐ and inter‐day accuracy and precision were in the ranges of ?14.3–13.2 and 3.4–11.8%, respectively. Flavokawain B was demonstrated to be stable under various stability conditions. This method has been applied to a pharmacokinetic study in rats. 相似文献
14.
Noriko Matsunaga Takashi Kitahara Makiko Yamada Kayoko Sato Yukinobu Kodama Hitoshi Sasaki 《Biomedical chromatography : BMC》2019,33(2)
Sunitinib is an orally administered tyrosine kinase inhibitor. Therapeutic drug monitoring is an important component of the follow‐up of patients because of high interpatient variability in the pharmacokinetics of sunitinib and large variabilities in its efficacy and toxicity. The aim of the present study was to examine the light stability of sunitinib and confirm the effects of light exposure on sunitinib measurements by LC–MS/MS. Sunitinib and its active metabolite, SU12662, convert Z isomers to E isomers with exposure to light. The Z–E photoisomerization ratio reached a plateau at 35% for both E isomers in methanol within 15 min of normal light exposure (700 lx). However, the Z isomer of the sunitinib and SU12662 peak area ratios in plasma decreased by 10% within 15 min. These results suggest that sunitinib samples need to be handled without light exposure in all sample preparation steps. Alternatively, it should be measured sunitinib and SU12662 after the sample has reached photoisomerical equilibrium. These results suggest that the sunitinib therapeutic range changes depending on light conditions during sample handling in sunitinib and SU12662 measurements. 相似文献
15.
Xianqin Wang Zheng Xiang Xiaojun Cai Haiya Wu Xuebao Wang Junwei Li Meiling Zhang 《Biomedical chromatography : BMC》2011,25(7):833-837
A sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of pethidine in human plasma was developed and validated over the concentration range of 4–2000 ng/mL. After addition of ketamine as internal standard, liquid–liquid extraction was used to produce a protein‐free extract. Chromatographic separation was achieved on a 100 × 2.1 mm, 5 µm particle, AllureTM PFP propyl column, with 45:40:15 (v/v/v) acetonitrile–methanol–water containing 0.2% formic acid as mobile phase. The MS data acquisition was accomplished by multiple reactions monitoring mode with positive electrospray ionization interface. The lower limit of quantification was 4 ng/mL; for inter‐day and intra‐day tests, the precision (RSD) for the entire validation was less than 7%, and the accuracy was within 95.9–106.5%. The method is sensitive and simple, and was successfully applied to analysis of samples of clinical intoxication. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
16.
Ting‐ting Bian Yin‐jie Li Xiao‐wen Wu Dong‐zhi Yang Shui‐shi Jiang Dao‐quan Tang 《Journal of separation science》2013,36(24):3837-3844
An LC–MS/MS method was developed and validated for the simultaneous quantification of edaravone and taurine in beagle plasma. The plasma sample was deproteinized using acetonitrile containing formic acid. Chromatographic separations were achieved on an Agilent Zorbax SB‐Aq (100 × 2.1 mm, 3.5 μm) column, with a gradient of water (containing 0.03% formic acid) and methanol as the mobile phase at a flow rate of 0.3 mL/min. The analyte detection was carried out in multiple reaction monitoring mode and the optimized precursor‐to‐product transitions of m/z [M+H]+ 175.1 → 133.0 (edaravone), m/z [M+H]+ 189.1 → 147.0 (3‐methyl‐1‐p‐tolyl‐5‐pyrazolone, internal standard, IS), m/z [M–H]? 124.1→80.0 (taurine), and m/z [M–H]? 172.0 → 80.0 (sulfanilic acid, IS) were employed to quantify edaravone, taurine, and their corresponding ISs, respectively. The LOD and the lower LOQ were 0.01 and 0.05 μg/mL for edaravone and 0.66 and 2 μg/mL for taurine, respectively. The calibration curves of these two analytes demonstrated good linearity (r > 0.99). All the validation data including the specificity, precision, recovery, and stability conformed to the acceptable requirements. This validated method has successfully been applied in the pharmacokinetic study of edaravone and taurine mixture in beagle dogs. 相似文献
17.
Triptolide is one of the main active ingredients of Tripterygium wilfordii Hook. F. In this study, a sensitive LC–MS/MS method was established and validated to determine the concentration of triptolide in rat plasma. Triptolide and an internal standard [(5R)‐5‐hydroxytriptolide] were extracted from 100 μL of rat plasma with acetonitrile, and the dried residue was then reconstituted and reacted with benzylamine to produce benzylamine triptolide and benzylamine (5R)‐5‐hydroxytriptolide. Derivatization increased the sensitivity of triptolide detection by ~100‐fold. Quantification was performed using a QTRAP 5500 tandem mass spectrometer with positive electrospray ionization in multiple reaction monitoring mode with an ion transition m/z 468.5 → 192.0 for benzylamine triptolide and m/z 484.3 → 192.1 for benzylamine (5R)‐5‐hydroxytriptolide. Good linearity was observed in the range of 0.030–100 ng/mL with a lower limit of quantitation of 0.030 ng/mL. The intra‐ and inter‐day precision was <6.5%, and the accuracy ranged from ?11.7 to ?4.4%. The recovery remained consistent and was reproducible at different concentrations. This method was successfully applied to the study of triptolide drug–drug interactions in Sprague–Dawley rats. With the use of itraconazole (40 mg/kg, p.o.) as a CYP3A inhibitor, the plasma exposure of triptolide in rats was increased by 36%. 相似文献
18.
《Biomedical chromatography : BMC》2018,32(3)
The differences among individual eicosanoids in eliciting different physiological and pathological responses are largely unknown because of the lack of valid and simple analytical methods for the quantification of individual eicosanoids and their metabolites in serum, sputum and bronchial alveolar lavage fluid (BALF). Therefore, a simple and sensitive LC–MS/MS method for the simultaneous quantification of 34 eicosanoids in human serum, sputum and BALF was developed and validated. This method is valid and sensitive with a limit of quantification ranging from 0.2 to 3 ng/mL for the various analytes, and has a large dynamic range (500 ng/mL) and a short run time (25 min). The intra‐ and inter‐day accuracy and precision values met the acceptance criteria according to US Food and Drug Administration guidelines. Using this method, detailed eicosanoid profiles were quantified in serum, sputum and BALF from a pilot human study. In summary, a reliable and simple LC–MS/MS method to quantify major eicosanoids and their metabolites was developed and applied to quantify eicosanoids in human various fluids, demonstrating its suitability to assess eicosanoid biomarkers in human clinical trials. 相似文献
19.
《Biomedical chromatography : BMC》2017,31(11)
The measurement of catecholamines in human body fluids is requested frequently for the differential diagnosis and monitoring of pheochromocytoma. The methods in most clinical laboratories focus on high‐performance liquid chromatography coupled with electrochemical detection, which suffers from high background noise, low sensitivity, and poor separation. We reported and developed a robust high‐throughput liquid chromatography tandem mass spectrometry method in routine clinical laboratories for the measurement of urinary catecholamines for diagnosis of pheochromocytoma. The method was validated for consistent linearity, good recovery (88–112%), excellent stability and low carryover. Intra‐ and inter‐assay precision values for catecholamines were all below 3.35 and 4.83% respectively. Dilution linearity was investigated with satisfactory linearly dependent coefficients (r > 0.9988). The reference intervals were obtained from 310 results derived from patients in which the diagnosis of pheochromocytoma was excluded. This method was successfully used in our laboratory. The clinical characteristics of patients have been explored with satisfactory sensitivity and specificity. Therefore, we have developed a reliable assay for the liquid chromatography tandem mass spectrometry measurement of catecholamines in a routine clinical laboratory. The assay requires a small volume of urine, and all analytes are measured simultaneously. The assay is rapid and reliable to be executed, offering the potential for routine clinical laboratories. 相似文献
20.
《Biomedical chromatography : BMC》2018,32(8)
An accurate and sensitive LC–MS/MS method for determining thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in human plasma was developed and validated using umbelliferone as an internal standard. The analytes were extracted from plasma (100 μL) by liquid–liquid extraction with ethyl acetate and then separated on a BETASIL C18 column (4.6 × 150 mm, 5 μm) with mobile phase composed of methanol–water containing 0.1% formic acid (70:30, v/v) in isocratic mode at a flow rate of 0.5 mL/min. The detection was performed using an API triple quadrupole mass spectrometer in atmospheric pressure chemical ionization mode. The precursor‐to‐product ion transitions m/z 259.1 → 186.1 for thalidomide, m/z 273.2 → 161.3 for 5‐hydroxy thalidomide, m/z 273.2 → 146.1 for 5′‐hydroxy thalidomide and m/z 163.1 → 107.1 for umbelliferone (internal standard, IS) were used for quantification. The calibration curves were obtained in the concentrations of 10.0–2000.0 ng/mL for thalidomide, 0.2–50.0 ng/mL for 5‐hydroxy thalidomide and 1.0–200.0 ng/mL for 5′‐hydroxy thalidomide. The method was validated with respect to linear, within‐ and between‐batch precision and accuracy, extraction recovery, matrix effect and stability. Then it was successfully applied to estimate the concentration of thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in plasma samples collected from Crohn's disease patients after a single oral administration of thalidomide 100 mg. 相似文献