首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a fast and simple method for the extraction, preconcentration and determination of fluvoxamine, nortriptyline and maprotiline in urine using simultaneous derivatization and temperature‐assisted dispersive liquid–liquid microextraction (TA‐DLLME) followed by gas chromatography–flame ionization detection (GC‐FID). An appropriate mixture of dimethylformamide (disperser solvent), 1,1,2,2‐tetrachloroethane (extraction solvent) and acetic anhydride (derivatization agent) was rapidly injected into the heated sample. Then the solution was cooled to room temperature and cloudy solution formed was centrifuged. Finally a portion of the sedimented phase was injected into the GC‐FID. The effect of several factors affecting the performance of the method, including the selection of suitable extraction and disperser solvents and their volumes, volume of derivatization agent, temperature, salt addition, pH and centrifugation time and speed were investigated and optimized. Figures of merit of the proposed method, such as linearity (r2 > 0.993), enrichment factors (820–1070), limits of detection (2–4 ng mL?1) and quantification (8–12 ng mL?1), and relative standard deviations (3–6%) for both intraday and interday precisions (concentration = 50 ng mL?1) were satisfactory for determination of the selected antidepressants. Finally the method was successfully applied to determine the target pharmaceuticals in urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A one‐step ultrasound/microwave‐assisted solid–liquid–solid dispersive extraction procedure was used for the simultaneous determination of eight neonicotinoids (dinotefuran, nitenpyram, thiamethoxam, clothianidin, imidacloprid, acetamiprid, thiacloprid, imidaclothiz) in dried Dendrobium officinale by liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry in multiple reaction monitoring mode. The samples were quickly extracted by acetonitrile and cleaned up by the mixed dispersing sorbents including primary secondary amine, C18, and carbon‐GCB. Parameters that could influence the ultrasound/microwave‐assisted extraction efficiency such as microwave irradiation power, ultrasound irradiation power, temperature, and solvent were investigated. Recovery studies were performing well (70.4–113.7%) at three examined spiking levels (10, 50, and 100 μg/kg). Meanwhile, the limits of quantification for the neonicotinoids ranged from 0.87 to 1.92 μg/kg. The method showed good linearity in the concentration range of 1–100 μg/L with correlation coefficients >0.99. This quick and useful analytical method could provide a basis for monitoring neonicotinoid insecticide residues in herbs.  相似文献   

3.
In the present study, a new extraction method based on a three–phase system, liquid–liquid–liquid extraction, followed by dispersive liquid–liquid microextraction has been developed and validated for the extraction and preconcentration of three commonly prescribed tricyclic antidepressant drugs – amitriptyline, imipramine, and clomipramine – in human plasma prior to their analysis by gas chromatography–flame ionization detection. The three phases were an aqueous phase (plasma), acetonitrile and n–hexane. The extraction mechanism was based on the different affinities of components of the biological sample (lipids, fatty acids, pharmaceuticals, inorganic ions, etc.) toward each of the phases. This provided high selectivity toward the analytes since most interferences were transferred into n–hexane. In this procedure, a homogeneous solution of the aqueous phase (plasma) and acetonitrile (water–soluble extraction solvent) was broken by adding sodium sulfate (as a phase separating agent) and the analytes were extracted into the fine droplets of the formed acetonitrile. Next, acetonitrile phase was mixed with 1,2–dibromoethane (as a preconcentration solvent at microliter level) and then the microextraction procedure mentioned above was performed for further enrichment of the analytes. Under the optimum extraction conditions, limits of detection and lower limits of quantification for the analytes were obtained in the ranges of 0.001–0.003 and 0.003–0.010 μg mL−1, respectively. The obtained extraction recoveries were in the range of 79–98%. Intra– and inter–day precisions were < 7.5%. The validated method was successfully applied for determination of the selected drugs in human plasma samples obtained from the patients who received them.  相似文献   

4.
A new analytical method for the simultaneous determination of trace levels of seven prohibited N‐nitrosamines (N‐nitrosodimethylamine, N‐nitrosoethylmethylamine, N‐nitrosopyrrolidine, N‐nitrosodiethylamine, N‐nitrosopiperidine, N‐nitrosomorpholine, and N‐nitrosodiethanolamine) in cosmetic products has been developed. The method is based on vortex‐assisted reversed‐phase dispersive liquid–liquid microextraction, which allows the extraction of highly polar compounds, followed by liquid chromatography with mass spectrometry. The variables involved in the extraction process were studied to obtain the highest enrichment factor. Under the selected conditions, 75 μL of water as extraction solvent was added to 5 mL of n‐hexane sample solution and assisted by vortex mixing during 30 s to form the cloudy solution. The method was successfully validated showing good linearity (0.5–50 ng/mL), enrichment factors up to 65 depending on the target compound, limits of detection values of 1.8–50 ng/g, and good repeatability (RSD < 9.8%). Finally, the proposed method was applied to different cosmetic samples. Quantitative relative recovery values (80–113%) were obtained, thus showing that matrix effects were negligible. The achieved analytical features of the proposed method, besides of its simplicity and affordability, make it useful to perform the quality control of cosmetic products to ensure the safety of consumers.  相似文献   

5.
In this work, a new, cheap, simple, fast, and low organic solvent consuming procedure is proposed for isolation, enrichment, and gas chromatographic determination of some phthalate esters in edible oils. The method is based on a combination of air‐assisted liquid–liquid extraction and dispersive liquid–liquid microextraction followed by a drying step under N2 gas. Several experimental parameters affecting both extraction and preconcentration steps were investigated and optimized. Under the optimum conditions for the proposed method, wide linear ranges (0.05–800 μg/L) and low detection limits (0.007–0.023 μg/L) were observed. The ranges of enrichment factors and extraction recoveries were 68–340 and 14–68%, respectively. Eventually, the target analytes were successfully determined in different edible oils using the proposed method.  相似文献   

6.
Vortex‐assisted dispersive liquid–liquid microextraction using methyl benzoate as an alternative extraction solvent for extracting and preconcentrating three benzimidazole fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in environmental water samples before high‐performance liquid chromatographic analysis has been developed. The selected microextraction conditions were 250 μL of methyl benzoate containing 300 μL of ethanol, 1.0% w/v sodium acetate, and vortex agitation speed of 2100 rpm for 30 s. Under optimum conditions, preconcentration factors were 14.5–39.0 for the target fungicides. Limits of detection were obtained in the range of 0.01–0.05 μg/L. The proposed method was then applied to surface water samples and the recovery evaluations at three spiked concentration levels of 5, 30, and 50 μg/L were obtained in the range of 77.4–110.9% with the relative standard deviation <7.4%. The present method was simple, rapid, low cost, sensitive, environmentally friendly, and suitable for the trace analysis of the studied fungicides in environmental water samples.  相似文献   

7.
We present a new method for simultaneous determination of 22 monoaromatic and polycyclic aromatic hydrocarbons in postoxidative effluents from the production of petroleum bitumen using dispersive liquid–liquid microextraction coupled to gas chromatography and mass spectrometry. The eight extraction parameters including the type and volume of extraction and disperser solvent, pH, salting out effect, extraction, and centrifugation time were optimized. The low detection limit ranging from 0.36 to 28 μg/L, limit of quantitation (1.1–84 μg/L), good reproducibility, and wide linear ranges, as well as the recoveries ranging from 71.74 to 114.67% revealed that the new method allows the determination of aromatic hydrocarbons at low concentration levels in industrial effluents having a very complex composition. The developed method was applied to the determination of content of mono‐ and polycyclic aromatic hydrocarbons in samples of raw postoxidative effluents in which 15 compounds were identified at concentrations ranging from 1.21 to 1017.0 μg/L as well as in effluents after chemical treatment.  相似文献   

8.
A vortex‐assisted liquid–liquid micro‐extraction coupled with high‐performance liquid chromatography, with UV–vis, is proposed to pre‐concentrate methyl methacrylate and to improve separation in biological matrices. The use of 1‐octanol as extracting phase, its volume, the need for a dispersant agent, the agitation conditions and the cooling time before phase separation were evaluated. In optimum conditions, enrichment factors of 20 (±0.5) and enrichment recovery of 99% were obtained. The straightforward association of this extraction process with the HPLC method, previously regulated by the International Organization for Standardization, afforded a detection limit of 122 ng/mL and a quantification limit of 370 ng/mL. The within‐batch precision, relative standard deviation, was 3% for a sample with 1.49 µg/mL and 4% for a sample with 13.4 µg/mL. The results showed a between batch‐precision of 21% for experiments performed on five different days, for a sample with a concentration of 1.10 µg/mL in methyl methacrylate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, for the first time, salt‐assisted liquid–liquid extraction was performed in a microchannel system. The proposed design is based on the increase of contact surface area between target analytes and extracting phase during the sample and extracting phase transfer in microchannel. In this method, first sample solution, extracting solvent, and salt were mixed by stirrer and simultaneously delivered into a microchannel using a syringe pump. In order to optimize the influential parameters on the extraction efficiency of the proposed method, zidovudine and tenofovir disoproxil fumarate were selected as model analytes. The main parameters such as extracting solvent and its volume, salt amount, pH of sample solution, and microchannel shape, length, and its inner diameter were investigated and optimized. Under the optimized conditions, the proposed method was linear in the range of 0.1–30 µg/mL and R2 coefficients were equal to 0.9922 and 0.9947 for zidovudine and tenofovir disoproxil fumarate, respectively. Extraction efficiency of the proposed method was compared with conventional salt‐assisted liquid–liquid extraction. The results show that the proposed design has higher extraction efficiency than conventional salt‐assisted liquid–liquid extraction. Finally, the proposed method was successfully applied for the determination of zidovudine and tenofovir disoproxil fumarate in plasma samples.  相似文献   

10.
A new method was developed for the trace determination of phthalic acid esters in plasma using dispersive liquid–liquid microextraction and gas chromatography with mass spectrometry analysis. Plasma proteins were efficiently precipitated by trichloroacetic acid and then a mixture of chlorobenzene (as extraction solvent) and acetonitrile (as dispersive solvent) rapidly injected to clear supernatant using a syringe. After centrifuging, chlorobenzene sedimented at the bottom of the test tube. 1 μL of this sedimented phase was injected into the gas chromatograph for phthalic acid esters analysis. Different factors affecting the extraction performance, such as the type of extraction and dispersive solvent, their volume, extraction time, and the effects of salt addition were investigated and optimized. Under the optimum conditions, the enrichment factors and extraction recoveries were satisfactory and ranged between 820–1020 and 91–97%, respectively. The linear range was wide (50–1000 ng/mL) and limit of detection was very low (1.5–2.5 ng/mL for all analytes). The relative standard deviations for analysis of 1 μg/mL of the analytes were between 3.2–6.1%. Salt addition showed no significant effect on extraction recovery. Finally, the proposed method was successfully utilized for the extraction and determination of the phthalic acid esters in human plasma samples and satisfactory results were obtained.  相似文献   

11.
Optimization of alcoholic‐assisted dispersive liquid–liquid microextraction of pentachlorophenol (PCP) and determination of it with high‐performance liquid chromatography (UV‐Vis detection) was investigated. A Plackett‐Burman design and a central composite design were applied to evaluate the alcoholic‐assisted dispersive liquid–liquid microextraction procedure. The effect of seven parameters on extraction efficiency was investigated. The factor studied were type and volume of extraction and dispersive solvents, amount of salt, and agitation time. According to Plackett‐Burman design results, the effective parameters were type and volume of extraction solvent and agitation time. Next, a central composite design was applied to obtain optimal condition. The optimized conditions were obtained at 170‐μL 1‐octanol and 5‐min agitation time. The enrichment factor of PCP was 242 with limits of detection of 0.04 μg L?1. The linearity was 0.1–100 μg L?1 and the extraction recovery was 92.7%. RSD for intra and inter day of extraction of PCP were 4.2% and 7.8%, respectively for five measurements. The developed method was successfully applied for the determination of PCP in environmental water samples.  相似文献   

12.
A homogeneous liquid‐liquid extraction performed in narrow tube coupled to in–syringe‐dispersive liquid‐liquid microextraction based on deep eutectic solvent has been developed for the extraction of six herbicides from tea samples. In this method, sodium chloride as a separation agent is filled into the narrow tube and the tea sample is placed on top of the salt. Then a mixture of deionized water and deep eutectic solvent (water miscible) is passed through the tube. In this procedure, the deep eutectic solvent is realized as tiny droplets in contact with salt. By passing the droplets from the tea layer placed on the salt layer, the analytes are extracted into them. After collecting the solvent as separated layer, it is mixed with another deep eutectic solvent (choline chloride/butyric acid) and the mixture is dispersed into deionized water placed in a syringe. After adding acetonitrile to break up the cloudy state, the collected organic phase is injected into gas chromatography‐mass spectrometry. Under optimal conditions, limits of detection and quantification in the ranges of 2.6–8.4 and 9.7–29 ng/kg, respectively, were obtained. The extraction recoveries and enrichment factors in the ranges of 70–89% and 350–445 were obtained, respectively.  相似文献   

13.
A novel pre‐treatment was proposed for the simultaneous determination of aflatoxins, ochratoxin A and zearalenone in foodstuffs using high‐performance liquid chromatography with fluorescence detection. The analytical procedure was based on a first step using a quick, easy, cheap, effective, rugged, and safe based extraction procedure, followed by salting out and purification with a C18 solid‐phase extraction column as interference removal clean‐up. Subsequently, collected supernatant was subjected to dispersive liquid–liquid microextraction. Response surface methodology based on central composite design was employed to optimize conditions in the microextraction procedure. Under the optimum conditions, satisfactory analytical performance with recoveries ranging from 63.22 to 107.6% were achieved in different types of cereals and beans, as well as desirable precisions (0.81–8.13%). Limits of detections and quantifications for these six mycotoxins ranging from 0.03 to 13 μg/kg and 0.22 to 44 μg/kg, respectively, were obtained. Finally, the established method was successfully validated by four certified reference materials (P  = 0.897 > 0.05) and applied to 79 samples from local markets.  相似文献   

14.
In recent years, hydrophobic deep eutectic solvents as new generation of green solvents have attracted wide attention in liquid microextraction technique. In this article, four hydrophobic deep eutectic solvents composed of trioctylmethylammonium chloride and oleic acid were designed and prepared firstly. Combined with high‐performance liquid chromatography, these deep eutectic solvents were used as an extraction solvent in vortex‐assisted dispersive liquid–liquid microextraction for the selective enrichment and indirect determination of trace nitrite from real water and biological samples. This method is based on the diazotization‐coupling reaction of nitrite with p‐nitroaniline and diphenylamine in acidic water, and then the nitrite is quantified indirectly by measuring the obtained azo compounds. Some factors influencing the extraction efficiency, including the reaction and extraction conditions, were investigated. Under the optimized conditions, the method has a linear range of 1–300 μg/L with a correlation coefficient of 0.9924, limit of detection of 0.2 μg/L, limit of quantitation of 1 μg/L, intraday and interday relative standard deviations of 4.0 and 6.0%. This method was successfully applied in determination of nitrite from three environmental water and two biological samples with the recovery in the range of 90.5–115.2%. In addition, these results were well agreement with those obtained by the conventional Griess method.  相似文献   

15.
In the present study, a simple and rapid method for the extraction and preconcentration of some polycyclic aromatic hydrocarbons in water samples has been developed. In this method, two sample preparation methods were combined to obtain high extraction recoveries and enrichment factors for sensitive analysis of the selected analytes. In the first stage of the method, a homogeneous solution containing an aqueous solution and cyclohexyl amine is broken by the addition of a salt. After centrifugation, the upper collected phase containing the extracted analytes is subjected to the following dispersive liquid–liquid microextraction method. Rapid injection of the mixture of cyclohexyl amine resulted from the first stage and 1,1,2‐trichloroethane (as an extraction solvent) into an acetic acid solution is led to form a cloudy solution. After centrifuging, the fine droplets of the extraction solvent are settled down in the bottom of the test tube, and an aliquot of it is analyzed by gas chromatography. Under the optimum extraction conditions, enrichment factors and limits of detection for the studied analytes were obtained in the ranges of 616–752 and 0.08–0.20 μg/L, respectively. The simplicity, high extraction efficiency, short sample preparation time, low cost, and safety demonstrated the efficiency of this method relative to other approaches.  相似文献   

16.
Although aflatoxins contamination in feedstuff is a well‐known problem, and hence these residues are controlled in poultry products, there is scarce information regarding the presence of these toxic substances in aquaculture fish, facilities that use several feedstuff for fish breeding. A simple, rapid, and sensitive method has been therefore developed for aflatoxins (B1, B2, G1, and G2) assessment in aquaculture products by combining ultrasound probe‐assisted extraction and vortex‐assisted liquid–liquid microextraction as a sample pretreatment, and high‐performance liquid chromatography‐tandem mass spectrometry as a separation/detection system. Aflatoxins were extracted from fish flesh/liver with a 60:40 acetonitrile/aqueous phosphate buffer (pH 7.0) mixture before preconcentration and clean‐up by vortex‐assisted liquid–liquid microextraction under the following optimized conditions: 5.0 mL of fish extract at pH 7.0 and NaCl at 0.5% (w/v), 400 μL of chloroform as extracting solvent, and vortex shaking at 2000 rpm for 1 min. The proposed method is shown to be precise and accurate, and the limit of quantitations (from 0.20 to 1.10 μg kg?1) were lower than the value established by the European Commission Regulation for aflatoxins in foodstuff. Results have shown that fish flesh is free of aflatoxins, but aflatoxins B2 and G1 were quantified in fish liver.  相似文献   

17.
A simple, rapid, and efficient method, vortex‐assisted extraction followed by dispersive liquid–liquid microextraction (DLLME) has been developed for the extraction of polycyclic aromatic hydrocarbons (PAHs) in sediment samples prior to analysis by high performance liquid chromatography fluorescence detection. Acetonitrile was used as collecting solvent for the extraction of PAHs from sediment by vortex‐assisted extraction. In DLLME, PAHs were rapidly transferred from acetonitrile to dichloromethane. Under the optimum conditions, the method yields a linear calibration curve in the concentration range from 10 to 2100 ng g?1 for fluorene, anthracene, chrysene, benzo[k]fluoranthene, and benzo[a]pyrene, and 20 to 2100 ng g?1 for other target analytes. Coefficients of determinations ranged from 0.9986 to 0.9994. The limits of detection, based on signal‐to‐noise ratio of three, ranged from 2.3 to 6.8 ng g?1. Reproducibility and recoveries was assessed by extracting a series of six independent sediment samples, which were spiked with different concentration levels. Finally, the proposed method was successfully applied in analyses of real nature sediment samples. The proposed method extended and improved the application of DLLME to solid samples, which greatly shorten the extraction time and simplified the extraction process.  相似文献   

18.
An ionic‐liquid‐based in situ dispersive liquid–liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7–10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values.  相似文献   

19.
A novel dispersive solid‐phase extraction combined with vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high‐performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean‐up of the extract was conducted by dispersive solid‐phase extraction using activated carbon as the sorbent. The vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1‐undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2–500 ng/g with correlation coefficients (r) of 0.9993–0.9999. The limits of detection were in the range of 0.08–0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices.  相似文献   

20.
A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut‐glass dropper was designed and applied to collect the floating extraction drop in liquid–liquid microextraction when low‐density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low‐density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex‐assisted liquid–liquid microextraction was employed to investigate the usefulness of the apparatus. High‐performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r2 = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号