首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Synthesis and Reactivity of 2‐Bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborole Molecular Structure of Bis(1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborol‐2‐yl The reaction of a slurry of calcium hydride in toluene with N,N′‐diethyl‐o‐phenylenediamine ( 1 ) and boron tribromide affords 2‐bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol ( 2 ) as a colorless oil. Compound 2 is converted into 2‐cyano‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 3 ) by treatment with silver cyanide in acetonitrile. Reaction of 2 with an equimolar amount of methyllithium affords 1,3‐diethyl‐2‐methyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 4 ). 1,3,2‐Benzodiazaborole is smoothly reduced by a potassium‐sodium alloy to yield bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐yl] ( 7 ), which crystallizes from n‐pentane as colorless needles. Compound 7 is also obtained from the reaction of 2 and LiSnMe3 instead of the expected 2‐trimethylstannyl‐1,3,2‐benzodiazaborole. N,N′‐Bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐ yl)‐1,2‐diamino‐ethane ( 6 ) results from the reaction of 2 with Li(en)C≡CH as the only boron containing product. Compounds 2 – 4 , 6 and 7 are characterized by means of elemental analyses and spectroscopy (IR, 1H‐, 11B{1H}‐, 13C{1H}‐NMR, MS). The molecular structure of 7 was elucidated by X‐ray diffraction analysis.  相似文献   

2.
One pot green synthesis of 1‐(1,2,4‐triazol‐4‐yl)spiro[azetidine‐2,3′‐(3H)‐indole]‐2′,4′(1′H)‐diones was carried out by the reaction of indole‐2,3‐diones,4‐amino‐4H‐1,2,4‐triazole and acetyl chloride/chloroacetyl chloride in ionic liquid [bmim]PF6 with/without using a catalyst. It was also prepared by conventional method via Schiff's bases, 3‐[4H‐1,2,4‐triazol‐4‐yl]imino‐indol‐2‐one. Further, the corresponding phenoxy derivatives were obtained by the reaction of chloro group attached to azetidine ring with phenols. The synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR, and FAB mass) data. Evaluation for insecticidal activity against Periplaneta americana exhibited promising results.  相似文献   

3.
A novel series of pyrido[2,3‐d]pyrimidines 3a – d , 4a – d , 5a – d , 6a – d , and 7a – d ; pyrido[3,2‐e][1,3,4]triazolo; and tetrazolo[1,5‐c]pyrimidines 10a – d and 11a – d was synthesized through different chemical reactions starting from 2‐amino‐3‐cyano‐4,6‐diarylpyridines. The newly synthesized heterocycles were characterized by elemental analysis, IR, 1H‐NMR, 13C‐NMR, and mass spectral data. Compounds have been screened for their antibacterial and antifungal activities. The data showed that the presence of electron‐donating group such as p‐methoxyphenyl increases the antimicrobial activity. Also, the compounds have shown anticancer activity for colon and liver cancer cells.  相似文献   

4.
A series of indeno[2′,1′:5,6]pyrido[2,3‐d]pyrazoles was synthesized by the three‐component reaction of aldehyde, 5‐amino‐3‐methyl‐1‐phenylpyrazole and 1,3‐indenedione in the presence of SDS in aqueous media. The structures were characterized by IR, 1H NMR, high resolution mass spectra and were further confirmed by X‐ray diffraction analysis.  相似文献   

5.
The enantiopure ketoimine of benzil – the ( S )‐(‐)‐(1‐phenylethylimino)benzyl phenyl ketone ( 1 ) obtained under microwave irradiation in solvent‐free conditions – reacts with Na2[PdCl4] to give the new chiral mono‐ and dinuclear Pd‐complexes 2 and 3 , which have been partly characterized by IR, 1H and 13C NMR spectroscopies along with MS‐FAB+ spectrometry. The crystal and molecular structures of both complexes has been fully confirmed by single‐crystal X‐ray studies. On the other hand, investigations in vitro of 2 and 3 have displayed growth inhibition against different classes of cancer: leukemia (K‐562 CML), colon cancer (HCT‐15), cancer breast (MCF‐7), central nervous system (U‐251 Glio) and prostate cancer (PC‐3) cell lines.  相似文献   

6.
Treatment 2‐arylmethyleneaminoisoindole‐1,3‐diones 1a – c with arenes in the presence of AlCl3‐DMF complex as a catalyst afforded the novel compounds, 2‐((arylidenehydrazono)(aryl)‐methyl)benzophenones 3a – n in satisfactory yields. The structure of the obtained products 3a – n was confirmed by the use of IR, 1H‐NMR, 13C‐NMR, mass spectra, and elemental analyses.  相似文献   

7.
The Gewald reactions of 5‐substituted‐1,3‐cyclohexanedione, malononitrile, and powdered sulfur were carried out to give the corresponding products 2‐amino‐5‐substituted‐7‐oxo‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile derivatives 1 . The intermediate enamines 2 were prepared by reaction of compounds 1 and 5‐substituted‐1,3‐cyclohexanedione with hydrochloric acid as catalyst. The title compounds 11‐amino‐2,8‐substituted‐2,3,8,9‐tetrahydrobenzo[4,5]thieno[2,3‐b]quinolinone 3 were synthesized by cyclization of compounds 2 in the presence of K2CO3 and Cu2Cl2. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H‐NMR spectra.  相似文献   

8.
A simple and convenient procedure for the preparation of some unknown 2,3‐disubstituted 5‐iodo‐1H‐pyrrolo[2,3‐b ]pyridines from readily available starting materials by Fischer indole cyclization in polyphosphoric acid is described. The present methodology provides an alternative synthetic approach to the synthesis of 5‐iodo‐7‐azaindole scaffold. All synthesized compounds were characterized by IR, MS, 1H and 13C NMR, and elemental analysis.  相似文献   

9.
Some new derivatives of 3,5‐diaryl‐4‐imino‐5,7,8,9‐tetrahydro‐3H‐chromeno[2,3‐d ]pyrimidine have been prepared through a condensation reaction of 2‐amino‐4‐aryl‐3‐cyano‐5,6,7,8‐tetrahydrobenzo[b ]pyrans with triethyl orthoformate in boiling acetic anhydride followed by cyclization with primary aryl amines in the presence of a few drops triethylamine as catalyst in refluxing ethanol. The products were characterized on the basis of IR, 1H‐NMR, and 13C‐NMR spectral and microanalytical data.  相似文献   

10.
In this study, we report the synthesis a series of novel 2‐[N‐(1H‐tetrazol‐5‐yl)‐6,14‐endo‐etheno‐6,7,8,14‐tetrahydrothebaine‐7α‐yl]‐5‐phenyl‐1,3,4‐oxadiazole derivatives ( 7a – e ) which have potential opioid antagonist and agonist. The substitution reaction of 6,14‐endo‐ethenotetrahydrothebaine‐7α‐carbohydrazide with corresponding benzoyl chlorides gave diacylhydrazine compounds 4a – e in good yields. The treatment of compounds 4a – e with POCl3 caused the conversion of side‐chain of compounds 5a – e into 1,3,4‐oxadiazole ring at C(7) position; thus, compounds 5a – e were obtained. Subsequently, cyanamides ( 6a – e ) were prepared from compounds 5a – e and then compounds 7a – e were synthesized by the azidation of 6a – e with NaN3. The structures of the compounds were established on the basis of their IR, 1H NMR, 13C APT, 2D‐NMR (COSY, NOESY, HMQC, HMBC) and high‐resolution mass spectral data.  相似文献   

11.
The I2‐catalyzed preparation of spiro[1,3,4‐benzotriazepine‐2,3′‐indole]‐2′,5(1H,1′H)‐diones from 2‐aminobenzohydrazide and isatins in MeCN at room temperature in good‐to‐excellent yields is described. The structure of 3 was corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS data). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

12.
A series of compounds, viz. 2‐(3‐(4‐aryl)‐1‐isonicotinoyl‐4,5‐dihydro‐1H‐pyrazol‐4‐yl)‐3‐phenylthiazolidin‐4‐one 4 ( a – n ), have been synthesized by reaction of 3 ( a – n ) with thioglycolic acid in the presence of zinc chloride. Compounds 3 ( a – n ) have been synthesized by amination of formylated pyrazoles 2 ( A – B ), which were synthesized by formylation of 1 ( A – B ) by Vilsmeier–Haack reagent (POCl3/DMF). Compounds 1 ( A – B ) were synthesized by condensation of hydrazide and substituted acetophenones under conventional method and microwave irradiation method. These compounds were identified on the basis of melting point range, Rf values, infrared, 1H NMR, and mass spectral analysis. These compounds were evaluated for their in vitro antimicrobial activity, and their minimum inhibitory concentration was determined. Among them, compound 4b and compound 4l possess appreciable antimicrobial and antifungal activities. Antibacterial activity results showed that compounds containing electron‐withdrawing groups were more active than compounds containing electron‐releasing groups.  相似文献   

13.
A chemoselective route for the synthesis of chromeno[2,3‐c]pyrazole‐2(3H)‐carbothioamide derivatives by a five‐component reaction of salicylaldehyde, malononitrile, NH2NH2?H2O, aryl isothiocyanate, and H2O in EtOH/AcOH mixture is reported. This new protocol has the advantages of high yields, short reaction times, ease of operation, and simple purification. All structures were confirmed by IR, 1H‐ and 13C‐NMR, and MS analyses. A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

14.
溴化(a-噻吩甲酰基)甲基三苯鉮1与3-取代苯甲叉基-2,4-戊二酮 2以碳酸钾为碱,在苯中55℃条件下反应,可以较好的收率、高立体选择性地生成反-2-(a-噻吩甲酰基)-3-取代苯基-4-乙氧羰基-5-甲基-2,3-二氢呋喃3。产物结构均经波谱予以确定。本文还提出了生成产物的可能机理。  相似文献   

15.
A series of 3‐substituted 2‐thioxo‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 4a – e were synthesized from the reaction of 3‐aminonaphthalene‐2‐carboxylic acid 1 with isothiocyanate derivatives 2a – e . The alkylation of 4a – e with alkyl halides gave 3‐substituted 2‐alkylsulfanyl‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 5a – o . S‐Glycosylation was carried out via the reaction of 4a – e with glycopyranosyl bromides 7a and 7b under anhydrous alkaline conditions. The structure of the compounds was established as S‐nucleoside and not N‐nucleoside. Conformational analysis has been studied by homonuclear and heteronuclear two‐dimensional NMR methods (2D DFQ‐COSY, heteronuclear multiple quantum coherence, and heteronuclear multiple bond correlation). The S site of alkylation and glycosylation was determined from the 1H and 13C heteronuclear multiple quantum coherence experiments.  相似文献   

16.
Thieno[2,3‐d]pyrimidinones were reported to act as potent anticancer agents; in this work, a series of new substituted thieno[2,3‐d]pyrimidinone ( 6 ) were synthesized via the aza‐Wittig reaction in satisfactory yields. The structures of these compounds were confirmed by elemental analysis, IR, 1H‐NMR, and mass spectral data, and compound 6h was further analyzed by single crystal X‐ray diffraction. Cytotoxic effect of all the compounds was carried out on human breast and lung cancer cell lines (MCF‐7 and SPC‐A‐1, A459). Compound 6f exhibited the best inhibition activities against A459 with IC50 4.1 μM.  相似文献   

17.
Ionic liquid [bmim]BF4 was found to be an efficient and recyclable reaction medium for the one‐pot synthesis of pyrido[2,3‐d]pyrimidines. The structures of the products were characterized by IR, 1H NMR, and HRMS spectra. This method had the advantages of easier work‐up, milder reaction conditions, high yields, and environmentally benign procedure.  相似文献   

18.
The synthesis of a new series of 4‐aryl‐3‐chloro‐2‐oxo‐N‐[3‐(10H‐phenothiazin‐10‐yl)propyl]azetidine‐1‐carboxamides, 4a – 4m , is described. Phenothiazine on reaction with Cl(CH2)3Br at room temperature gave 10‐(3‐chloropropyl)‐10H‐phenothiazine ( 1 ), and the latter reacted with urea to yield 1‐[3‐(10H‐phenothiazin‐10‐yl)propyl]urea ( 2 ). Further reaction of 2 with several substituted aromatic aldehydes led to N‐(arylmethylidene)‐N′‐[3‐(phenothiazin‐10‐yl)propyl]ureas 3a – 3m , which, on treatment with ClCH2COCl in the presence of Et3N, furnished the desired racemic trans‐2‐oxoazetidin‐1‐carboxamide derivatives 4a – 4m . The structures of all new compounds were confirmed by IR, and 1H‐ and 13C‐NMR spectroscopy, FAB mass spectrometry, and chemical methods.  相似文献   

19.
Chiral 1,3,2‐Oxazaborolidines from the Reaction of Chiral 2,3‐Dihydro‐1H‐1,3,2‐diazaboroles and Diphenylketene Reaction of equimolar amounts of diphenylketene with 1,3‐di‐tert‐butyl‐2‐isobutyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 1 ) regioselectively afforded 1,3,2‐oxazaborolidine ( 2 ). The employment of a series of chiral diazaboroles ( 3a : X = nBu; b: iBu; c: CH2SiMe3; d: NHtBu) led to the formation of the diastereoisomeric oxazaborolidines ( 4a – d ) with diastereomeric excesses de, which increase with the steric demand of X from de = 55 % (X = nBu) to de ≥ 95 % (X = NHtBu). Under comparable conditions the treatment of the enantiomerically pure diazaborole ( 6 ) with the ketene yielded oxazaborolidine ( 7 ) with a de‐value of only 52 %. The new compounds, with exception of 2 and 4d , are thermolabile solids, which were characterized mainly by spectroscopy (1H‐, 11B{1H}‐, 13C{1H}‐NMR, MS). The X‐ray structure analysis of 2 revealed a slightly puckered five‐membered heterocycle with a long B–O bond.  相似文献   

20.
The reaction of SnPh3Li with X(CH2)n O–THP (THP = tetrahydro‐2H ‐pyran‐2‐yl; n  = 3, 4, 6, 8, 11; X = Cl, Br) afforded organotin(IV) compounds with the general formula Ph3Sn(CH2)n O–THP ( 1 – 5 ). The tetraorganotin(IV) compounds were characterized using multinuclear NMR and infrared spectroscopies and high‐resolution mass spectrometry. Anticancer activity of the synthesized compounds was tested in vitro against the A2780 (ovarian), A549 (lung), HeLa (adenocarcinoma) and SW480 (colon) tumour cell lines with SRB assay. The in vitro investigations revealed that when a shorter chain was present a higher activity was achieved; however compounds 1 – 5 were found to be less active than cisplatin. In addition, the most active compound, 1 , enters A2780 cells and causes apoptosis by triggering both intrinsic and extrinsic caspase pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号