首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple and efficient method has been developed for the synthesis of various pyrazolo[3,4‐d]pyrimidines by using microwave irradiation under solvent‐free conditions. The advantages of applying microwave irradiation compared with the classical method were demonstrated. The structures of all the compounds were confirmed by the usual techniques and, in two cases, by X‐ray analysis. The compounds did not display appreciable ability to inhibit xanthine oxidase activity. Screening for antifungal activity showed that some derivatives were active against four fungi, with more significant results for Botrytis.  相似文献   

2.
Pyrazolo[3,4-d]pyrimidines represent an important class of heterocyclic compounds well-known for their anticancer activity exerted by the inhibition of eukaryotic protein kinases. Recently, pyrazolo[3,4-d]pyrimidines have become increasingly attractive for their potential antimicrobial properties. Here, we explored the activity of a library of in-house pyrazolo[3,4-d]pyrimidines, targeting human protein kinases, against Staphylococcus aureus and Escherichia coli and their interaction with ampicillin and kanamycin, representing important classes of clinically used antibiotics. Our results represent a first step towards the potential application of dual active pyrazolo[3,4-d]pyrimidine kinase inhibitors in the prevention and treatment of bacterial infections in cancer patients.  相似文献   

3.
5‐Amino‐4‐formyl pyrazole carboxylate gave facile reactions with malononitrile, hydrazine, and ketones in the presence of piperidine furnished substituted pyrazolo[3,4‐b]pyridines and pyrazolo[3,4‐b]quinolones. The pyridazine sulfonamides were obtained by the reaction of 5‐chloro 4‐formyl pyrazole carboxylate with sulfonamide derivatives.  相似文献   

4.
5‐Hydrazineyl‐3‐methyl‐1H‐pyrazole ( 1 ) was used as a starting material for the synthesis of novel pyrazolo[3,4‐c][1,2]diazepine derivatives 3 , 4 , and 6a,b by its reaction with acetylacetone, ethyl acetoacetate, and isatylidene derivatives 5a,b , respectively. Also, pyrazolo[3,4‐c][1,2]diazepine derivative 11 was synthesized via multicomponent reaction of 1 , benzaldehyde, and malononitrile. Moreover, compound 1 was used for synthesis novel pyrazolo[3,4‐c]pyrazole derivative 7 by its reaction with isatin. In addition, pyrazolo[3,4‐c]pyrazole derivatives 18a–c were synthesized by treatment of 2‐cyano‐N′‐(3‐methyl‐1H‐pyrazol‐5‐yl)acetohydrazide ( 13 ) with aromatic aldehydes 16a–c . The newly synthesized compounds were valeted by means of analytical and spectral data. All newly synthesized compounds were screened for their antioxidant activities. Compounds 3 , 13 , 18b , and 18c showed higher radical‐scavenging activities.  相似文献   

5.
A regioselective synthesis of novel pyrazolo[3,4‐d]pyrimidines, imidazo[1,2‐b]pyrazoles, pyrazolo[3,4‐d][1,2,3]triazine, pyrazolo[1,5‐c][1,3,5]triazine and pyrazolo[1,5‐c][1,3,5]thiadiazine incorporating a thiazole moiety was described via the reactions of the versatile, readily accessible 5‐amino‐3‐(phenylamino)‐N‐(4‐phenylthiazol‐2‐yl)‐1H‐pyrazole‐4‐carboxamide ( 1 ) with each of DMF‐DMA, phenylisothiocyanate, chloroacetyl chloride, phenacyl bromide, benzoylisothiocyanate and formalin, respectively. All structures of the newly synthesized compounds were elucidated by elemental analysis and spectral data.  相似文献   

6.
7.
1,3,4‐Thiadiazoles, pyrazolo[1,5‐a]pyrimidines, pyrazolo[5,1‐c]triazine, and thieno[3,2‐d]pyrimidines were synthesized from 1‐(5‐bromobenzofuran‐2‐yl)ethanone. The structures of the newly synthesized compounds were elucidated by elemental analysis, spectral data, chemical transformation, and alternative synthesis route whenever possible.  相似文献   

8.
New derivatives of pyrazolo[3,4‐b]pyrazine and related heterocycles were prepared starting from 6‐amino‐3‐methyl‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyrazine‐5‐carbonitrile ( 2 ) and using the key intermediates 4 , 5 , 6 , 14 , 15 and 16 . Some of the prepared compounds were evaluated for their antifungal and antibacterial activities.  相似文献   

9.
Three novel pyrazolo-[4,3-e][1,2,4]triazolopyrimidine derivatives (1, 2, and 3) were designed, synthesized, and evaluated for their in vitro biological activity. All three compounds exhibited different levels of cytotoxicity against cervical and breast cancer cell lines. However, compound 1 showed the best antiproliferative activity against all tested tumor cell lines, including HCC1937 and HeLa cells, which express high levels of wild-type epidermal growth factor receptor (EGFR). Western blot analyses demonstrated that compound 1 inhibited the activation of EGFR, protein kinase B (Akt), and extracellular signal-regulated kinase (Erk)1/2 in breast and cervical cancer cells at concentrations of 7 and 11 µM, respectively. The results from docking experiments with EGFR suggested the binding of compound 1 at the ATP binding site of EGFR. Furthermore, the crystal structure of compound 3 (7-(4-bromophenyl)-9-(pyridin-4-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine) was determined by single crystal X-ray analysis. Our work represents a promising starting point for the development of a new series of compounds targeting EGFR.  相似文献   

10.
Receptor tyrosine kinases such as VEGFR2 (vascular endothelial growth factor receptor 2, KDR) or EGFR (epidermal growth factor receptor) play crucial roles in a variety of diseases, such as cancer. Recently, some pyrrolopyrimidines were shown to be potent EGFR inhibitors. Therefore, new types of oxazolo[5,4‐d]pyrimidines and furo[2,3‐d]pyrimidines were synthesized (Schemes 1 and 2). Appropriately substituted derivatives of these classes of compounds inhibited VEGFR2 and EGFR with IC50 values in the low nanomolar range (see Table). Generally, the furopyrimidines were somewhat more active than the oxazolopyrimidines. The best inhibitors, 20m, 20p , and 20r , had an IC50 of 3 nM towards EGFR and showed a good selectivity, being distinctly less active towards VEGFR2.  相似文献   

11.
A facile ring‐enlargement reaction of 2,6‐diphenyl‐4H‐pyrazolo[5,1‐c][1,4]oxazin‐4‐one is described, generating the pyrazolo[5,1‐d][1,2,5]triazepin‐4‐ones in good yields. Structures of the prepared compounds were determined on the basis of IR, 1H‐ and 13C‐NMR, and HR‐MS data. Moreover, the molecular structure was confirmed by the X‐ray crystal‐structure analysis of one compound that was prone to crystallization. Preliminary biological evaluation showed that the compounds 2e – 2h promote the viability and inhibit the apoptosis of vascular endothelial cells at low concentration.  相似文献   

12.
A regioselective synthesis of novel pyrazolo[1,5‐a]pyrimidines, pyrazolo[1,5‐a]quinazoline and pyrimido[4′,5′:3,4]pyrazolo[1,5‐a]pyrimidines incorporating a thiazole moiety was described via the reactions of the versatile, readily accessible 5‐amino‐3‐(phenylamino)‐N‐(4‐phenylthiazol‐2‐yl)‐1H‐pyrazole‐4‐carboxamide 3 with appropriate 1,3‐biselectrophilic reagents namely, β‐diketones, enaminones, and α,β‐unsaturated cyclic ketone. The newly synthesized compounds were elucidated by elemental analysis, spectral data, and alternative synthetic route whenever possible.  相似文献   

13.
A series of novel 6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐7‐phenylpyrazolo[1,5‐a]pyrimidines, 5‐phenyl‐6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]imidazo[1,2‐a]pyrimidines, and 2‐phenyl‐3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]pyrimido[1,2‐a]benzimidazoles have been synthesized in four steps starting with 2‐hydroxyacetophenone. The intermediate 3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐4H‐1‐benzopyran‐4‐ones reacted with pyrazol‐3‐amines, 5‐methylpyrazol‐3‐amine, and 1H‐imidazol‐2‐amine, 1H‐benzimidazol‐2‐amine via a cyclocondensation to give the title compounds in the presence of MeONa as base, respectively. The approach affords the target compounds in acceptable‐to‐good yields. The new compounds were characterized by their IR, NMR, and HR mass spectra.  相似文献   

14.
A series of some fused heterocycles originated from pyrazolopyrimidines were synthesized using 4‐amino1‐methyl‐3‐propyl‐1H‐pyrazole‐5‐carboxamide as a starting material. The nucleophilic substitution reactions with different amino acids followed by cyclization and Suzuki–Miyaura cross‐coupling reactions with different aryl boronic acids of 7‐chloro‐5‐(4‐chlorophenyl)‐1‐methyl‐3‐propyl‐1H‐pyrazolo[4,3‐d]pyrimidine were performed. Also, the oxidative cyclization reactions of 1‐(5‐(4‐chlorophenyl)‐1‐methyl‐3‐propyl‐1H‐pyrazolo[4,3‐d]pyrimidin‐7‐yl)hydrazine with different aldehydes in the presence of diacetoxy iodobenzene are described. All the synthesized compounds were characterized by analytical and spectroscopic methods.  相似文献   

15.
The synthesis of different substituted pyrazolo[3,4‐b]pyridines by the reaction of 3‐amino‐5‐chloro‐1‐phenylpyrazole‐4‐carboxaldehyde 1 as starting material with some active methylene reagents has been reported.  相似文献   

16.
Synthesis of pyrazolo[1,5‐a]pyrimidines, [1,2,4]triazolo[1,5‐a]pyrimidine, 8,10‐dimethyl‐2‐(5‐methyl‐1‐phenyl‐4,5‐dihydro‐1H‐1,2,3‐triazol‐4‐yl)pyrido[2′,3′:3,4]‐pyrazolo[1,5‐a]pyrimidine, benzo[4,5]imidazo[1,2‐a]pyrimidine via heterocyclic amines, and sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐triazole‐4‐yl)prop‐2‐en‐1‐one were carried out. Also, synthesis of isoxazoles, and pyrazoles from sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐triazole‐4‐yl)prop‐2‐en‐1‐one and hydroxymoyl chlorides and hydrazonoyl halides, respectively, were made. Analogously, (1,2,3‐triazol‐4‐yl)thieno[2,3‐b]pyridine derivatives were obtained from sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐ triazole‐4‐yl)prop‐2‐en‐1‐one and cyanothioacetamide followed by its reacting with active methylene compounds. In addition to full characterization of all synthesized compounds, they were tested to evaluate their antimicrobial activities, and some compounds showed competitive activities to those of tetracycline, the typical antibacterial drug, and clotrimazole, the typical antifungal drug.  相似文献   

17.
Based on our previous researches, a novel phenylpyrimidine pharmacophore model was proposed and fifteen derivatives were synthesized and characterized by means of spectroscopy methods. The inhibitory effects of them were screened against HeLa cell line by virtue of MTT assay in vitro. The results indicate some of the phenylpyrimidine derivatives exhibit potent biological activities. Among them, compounds 6g and 6h exhibit the best activity at half maximal inhibitory concentrations of 1.5 and 2.8 μmol/L, respectively. These compounds also exhibit good activities against HepG2 cell line and MCF-7 cell line. FLT-3 kinase was screened as the most potent molecular target. Computational docking between compound 6g and FLT-3 was carried out to interpret the binding mode. The results show phenylpyrimidine derivatives have effective antitumor activities, which provides a base for further research of them as antitumor agents.  相似文献   

18.
A series of novel 6‐2‐methoxy‐5‐[4‐methoxy‐3‐(3‐aryl[1,2,4]triazolo[3,4‐b][1,3,4]oxadiazol‐6‐yl)benzyl]phenyl‐3‐aryl[1,2,4]triazolo[3,4‐b][1,3,4]oxadiazoles 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j has been synthesized and characterized via IR, 1H NMR, 13C NMR, MS, and elemental analyses. Compounds 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j were also screened for their antibacterial activity against Gram‐positive bacteria viz. Bacillus subtilis (MTCC 441), Bacillus sphaericus (MTCC 11), and Staphylococcus aureus (MTCC 96), and Gram‐negative bacteria viz. Pseudomonas aeruginosa (MTCC 741), Klobsinella aerogenes (MTCC 39), and Chromobacterium violaceum (MTCC 2656). The antibacterial screening reveal that the presence of 2,4‐difluorophenyl ( 7e ) or 4‐nitrophenyl ( 7f ) of 2‐pyrazyl ( 7i ), or 2‐furyl ( 7j ) on the triazole moiety exhibited potent inhibitory activity comparable with the standard drug streptomycin, at the tested concentrations, and emerged as potential molecules for further development.  相似文献   

19.
New pyrazolo[3,4‐b][1,4,5]benzothiadiazepine and its analogues 3 have been obtained by reaction of 4‐nitrosopyrazoles 1 with 2‐aminothiophenol 2a and its analogues 2b,c . Under fused conditions, dipyrazolyl derivatives 7a was obtained with a trace amount of quinoxaline 5a . On the other hand, 5b and 7b were obtained in equal amounts. A proposed pathway is presented.  相似文献   

20.
A series of α,β‐unsaturated ketones containing quinolone moieties 2 , 3 , 4 , 5 , 6 were synthesized by condensation of 7‐methoxyquinoline‐2,4(1H,3H)‐dione ( 1 ) with different aryl aldehydes. Pyrazole derivatives 8 , 9 , 10 , 11 were also synthesized via refluxing of α,β‐unsaturated ketones 2 , 3 , 4 , 5 , 6 with hydrazine derivatives. Newly synthesized compounds were characterized by elemental analyses, spectral data, and screened for their antioxidant and antitumor activities. Geometrical optimizations of the molecular structures for different synthesized compounds were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号