共查询到20条相似文献,搜索用时 12 毫秒
1.
Xuerong Xiao Ting Zhang Jianfeng Huang Qi Zhao Fei Li 《Biomedical chromatography : BMC》2020,34(8):e4864
Triptolide (TP), one of the main bioactive diterpenes of the herbal medicine Tripterygium wilfordii Hook F, is used for the treatment of autoimmune diseases in the clinic and is accompanied by severe hepatotoxicity. CYP3A4 has been reported to be responsible for TP metabolism, but the mechanism remains unclear. The present study applied a UPLC–QTOF–MS-based metabolomics analysis to characterize the effect of CYP3A4 on TP-induced hepatotoxicity. The metabolites carnitines, lysophosphatidylcholines (LPCs) and a serious of amino acids were found to be closely related to liver damage indexes in TP-treated female mice. Metabolomics analysis further revealed that the CYP3A4 inducer dexamethasone improved the level of LPCs and amino acids, and defended against oxidative stress. On the contrary, pretreatment with the CYP3A4 inhibitor ketoconazole increased liver damage with most metabolites being markedly altered, especially carnitines. Among these metabolites, except for LPC18:2, LPC20:1 and arginine, dexamethasone and ketoconazole both affected oxidative stress induced by TP. The current study provides new mechanistic insights into the metabolic alterations, leading to understanding of the role of CYP3A4 in hepatotoxicity induced by TP. 相似文献
2.
《Biomedical chromatography : BMC》2017,31(12)
The acute cardiotoxicity induced by Veratrum nigrum (VN) is explored by analyzing heart tissue metabolic profiles in mouse models and applying reversed‐phase liquid chromatography mass spectrometry and hydrophilic interaction liquid chromatography mass spectrometry that are based on ultra‐high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry. An animal model of acute heart injury was established in mice via intra‐gastric administration of VN. Then, electrocardiogram and echocardiograph monitoring of cardiac function and pathological examination were performed on mice in both the control and VN groups, and it was verified that acute heart injury was caused. Meanwhile, comparing the results of the control and VN groups, we detected 36 differential endogenous metabolites of heart tissue, including taurine, riboflavin, purine and lipids, which are related to many possible pathways such as purine metabolism, taurine and hypotaurine metabolism and energy metabolism. Our study provides a scientific approach for evaluating and revealing the mechanisms of VN‐induced cardiotoxicity via the metabolomic strategy. 相似文献
3.
4.
Separation and identification of multiple constituents in Xiao Chai Hu Decoction (Sho‐saiko‐to) by bioactivity‐guided fractionation combined with LC‐ESI‐QTOFMS/MS 下载免费PDF全文
Yingying Wu Ying Peng Cui Song Lingzhi Li Hui Ma Danqi Li Fang Wang Jingyu Yang Shaojiang Song Chunfu Wu 《Biomedical chromatography : BMC》2015,29(8):1146-1166
Xiao Chai Hu Decoction (XCHD), named Sho‐saiko‐to in Japanese, is a well‐known traditional Chinese medicine formula used in Asia. However, the characterization methods used in the past have lacked sensitivity and the nature of the active constituents of XCHD remains unclear. This study was carried out to establish the hyphenated method of bioactivity‐guided fractionation and liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry (LC‐ESI‐QTOFMS/MS) in order to identify the major bioactive constituents of XCHD. D101 macroporous resin was used to separate and enrich the material base into four fractions, XCHD‐1, XCHD‐2, XCHD‐3 and XCHD‐4. Each fraction was then evaluated for its antidepressant effect using depression‐related parameters. An LC‐ESI‐QTOFMS/MS method in both positive and negative ion mode was also applied for separation and identification of the biological active fractions of XCHD. As a result, 79 compounds including polysaccharides, flavonoids, saikosaponins, ginsenosides, licoricesaponins and gingerols were detected, 69 of them were identified or tentatively characterized. Based on our preliminary characterization investigations, polysaccharides, gingerols and flavonoids in XCHD may contribute to the antidepressant effect of XCHD. In conclusion, the hyphenated method of bioactivity‐guided fractionation and LC‐ESI‐QTOFMS/MS was meaningful for the isolation and preliminary identification of the biological active components in complex matrices of traditional Chinese medicine. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
5.
Hairong Wang Xiaoxu Zhang Peipei Jia Yanfen Zhang Siwen Tang Hongtao Wang Song Li Xinluan Yu Yingfei Li Lantong Zhang 《Biomedical chromatography : BMC》2016,30(6):913-922
Forsythia suspensa Vahl (Oleaceae) is an important original plant in traditional Chinese medicine. The air‐dried fruits of Forsythia suspensa have long been used to relieve respiratory symptoms. Phillyrin is one of the main chemical constituent of Forsythia suspensa. A clear understanding of the metabolism of phillyrin is very important in rational clinical use and pharmacological research. In this study, the metabolism of phillyrin in rat was investigated for the first time using an ultra‐high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) method. Bile, urine and feces were collected from rats after single‐dose (10 mg/kg) orally administered phillyrin. Liquid–liquid extraction and ultrasonic extraction were used to prepare samples. UPLC‐Q‐TOF‐MS analysis of the phillyrin samples showed that phillyrin was converted to a major metabolite, M26, which underwent deglucosidation, further dehydration and desaturation. A total of 34 metabolites were detected including 30 phase I and four phase II metabolites. The conjugation types and structure skeletons of the metabolites were preliminarily determined. Moreover, 28 new metabolites were reported for the first time. The main biotransformation route of phillyrin was identified as hydrolysis, oxidation and sulfation. These findings enhance our understanding of the metabolism and the real active structures of phillyrin. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
6.
Qiong Wu De‐Meng Xia Fen Lan Yang‐Kai Wang Xing Tan Jia‐Cen Sun Wei‐Zhong Wang Rui Wang Xiao‐Dong Peng Min Liu 《Biomedical chromatography : BMC》2019,33(10)
Hypertension is a common chronic disease, and it is the strongest risk factor for cardiovascular disease. Recently, the number of patients with hypertension‐related complications has increased significantly, adding a heavy burden to the public health system. It is known that chronic stress plays an important role in the pathogenesis of cardiovascular diseases such as hypertension and stroke. However, the impact of hypertension on the dysfunctions induced by chronic stress remains poorly understood. In this study, using LC–MS‐based metabolomics, we established a chronic stress model to demonstrate the mechanisms of stress‐induced hypertension. We found that 30 metabolites in chronically stressed rats were changed; of these metabolites, seven had been upregulated, and 23 had been downregulated, including amino acids, phospholipids, carnitines and fatty acids, many of which are involved in amino acid metabolism, cell membrane injury, ATP supply and inflammation. These metabolites are engaged in dysregulated pathways and will provide a targeted approach to study the mechanism of stress‐induced hypertension. 相似文献
7.
Tao Yang Chong Xu Zheng Tao Wang Chang Hong Wang 《Biomedical chromatography : BMC》2013,27(7):931-937
Andrographolide (AND), one of the major diterpenoids from Andrographis paniculata (Burm. f.) Nees, can be metabolized as a phase two metabolite of 14‐deoxy‐12‐hydroxy‐andrographolide‐19‐O‐β‐d ‐glucuronide in human. The aim of this study is to characterize and synthesize the phase one metabolite of 14‐deoxy‐12‐hydroxy‐andrographolide (DEO‐AND) after gavage feeding of AND in rats, and to compare the pharmacokinetics of AND and DEO‐AND after intravenous administration. DEO‐AND was first discovered existing in rat serum by HPLC‐MSn after administration of AND. Furthermore, the target metabolite was synthesized and elucidated by NMR. In addition, a rapid, selective and sensitive UPLC‐ESI/MS method was developed for the first time to determine the content of AND and DEO‐AND in rats serum. The method was successfully applied to a pharmacokinetic study in rats after a single intravenous dose of 5 mg/kg AND and DEO‐AND, respectively. In comparison, the pharmacokinetic parameters of metabolite DEO‐AND, including distribution rate constant, elimination rate constant, half‐life and mean residence time, were significantly less than those of AND (p < 0.05). However, the AUC0→720 min value after intravenous administration of DEO‐AND was 781.59 ± 81.46 µg min/mL, which was 17.71 times higher than that of AND (44.13 ± 10.45 µg min/mL; p < 0.05). These results show the pharmacokinetic profile of AND to be significantly different from that of DEO‐AND by intravenous administration. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
8.
Bei Zhang Mo Ying Li Xu Ming Luo Xiong Biao Wang Tong Wu 《Journal of mass spectrometry : JMS》2020,55(1)
Qixianqingming granules (QXQM) comprise a traditional Chinese medicine (TCM) formula that was developed based on the combination of TCM theory and clinical practice. This formula has been proven to effectively treat asthma. In this study, an analytical procedure using ultraperformance liquid chromatography, coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry, was established for the rapid separation and sensitive identification of the chemical components in QXQM and its metabolites in serum of rats. Seventy‐two compounds were systematically identified in QXQM, including flavonoids, terpenoids, anthraquinones, phenylethanoid glycosides, stilbenes, alkaloids, and organic acids. Thirteen prototype compounds and 29 metabolites were detected in the serum of rats. The results provided fundamental information for further studying the mechanisms and clinical application of QXQM. 相似文献
9.
Wenlan Li Xiangming Sun Bingmei Liu Lihui Zhang Ziquan Fan Yubin Ji 《Biomedical chromatography : BMC》2016,30(12):1975-1983
Evodia rutaecarpa (E. rutaecarpa) has been used to treat aches, vomiting and dysentery in traditional Chinese medicine. However, as a mildly toxic herb its toxic components have not been elucidated. An attempt was made to illuminate the hepatotoxic constituents of E. rutaecarpa. The 50% ethanol extracts of E. rutaecarpa from 19 different sources were used to establish UPLC fingerprints and administered to mice at a dose of 35 g/kg (crude medicine weight/mouse weight) once daily for 14 days. Serum levels of alanine transaminase, aspartate aminotransferase and liver coefficient were used as indices of liver injury. Additionally, the characteristic peaks of 19 fingerprints were identified. Spectrum–effect relationships between fingerprints and hepatotoxic indicators were analyzed using bivariate correlation analysis (BCA). The UPLC fingerprints were established and a total of 28 main compounds were identified. Because of the inherent variations in chemical compositions, the liver injury levels were different among the E. rutaecarpa samples from 19 sites of production. BCA results indicated that compounds dihydrorutaecarpine, 6‐acetoxy‐5‐epilimonin, goshuyuamide I, 1‐methyl‐2‐[(Z)‐5‐undecenyl]‐4(1H)‐quinolone, 1‐methyl‐2‐[(4Z,7Z)‐4,7‐tridecadienyl]‐4(1H)‐quinolone, evocarpine and 1‐methyl‐2‐[(6Z,9Z)‐6,9‐pentadecadienyl]‐4(1H)‐quinolone were tentatively determined as the primary hepatotoxic components. The present study provides a valuable method for the discovery of hepatotoxic constituents by combination of fingerprints and hepatotoxicity index. 相似文献
10.
Toosendanin (TSN) is a major triterpenoid existing in Melia toosendan, which has been used as a digestive tract parasiticide and insecticide but with serious hepatotoxicity. An ultra‐performance liquid chromatography–electrospray ionization–mass spectrometry method was developed for determination of TSN in rat plasma. Plasma samples were separated on Acquity UPLCTM BEH C18 column with acetonitrile and water as flow phase by gradient elution and determined by quadrupole mass spectrometer in negative selective ion monitoring mode. Usolic acid was used as internal standard. The calibration curves were linear over 0.02–3.0 µg/mL for TSN with a lower limit of quantification (LLOQ) of 20 ng/mL in rat plasma. The extraction recoveries of TSN were within 74.3–80.7% with an accuracy of 94.5–108.9%. The intra‐ and inter‐day precision values of the assay at three quality control levels were 8.8–13.8% and <13.9% at LLOQ level, respectively. The method was successfully applied to a pharmacokinetic study of TSN in rats after a single intravenous and oral administration of 2 and 60 mg/kg. The shorter Tmax, higher Vd and Cl of TSN after oral administration indicated that TSN could be absorbed, distributed and eliminated quickly in rats in vivo. The absolute bioavailability of TSN after oral administration was 9.9%. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
11.
《Biomedical chromatography : BMC》2018,32(2)
In this paper, an ultra high performance liquid chromatography tandem mass spectrometric (UPLC‐ESI‐MS/MS) method in positive ion mode was established to systematically identify and to compare the major aconitum alkaloids and their metabolites in rat plasma and urine after oral administration of Fuzi extract. A total twenty‐nine components including twenty‐five C19‐diterpenoid alkaloids and four C20‐diterpenoid alkaloids were identified in Fuzi extract. Thirteen of the parent components and five metabolites were detected in rat plasma and sixteen parent compounds and six metabolites in urine. These parent components found in rat plasma and urine were mainly C19‐diterpenoid alkaloids. All of the metabolites in vivo were demethylated metabolites (phase I metabolites), which suggested that demethylation was the major metabolic pathway of aconitum alkaloids in vivo. A comparison of the parent components in rat plasma and urine revealed that 3‐deoxyacontine was found in plasma but not in urine, while kalacolidine, senbusine and 16‐β‐hydroxycardiopetaline existed in urine but not in plasma, which indicated that most alkaloids components were disposed and excreted in prototype form. This research provides some important information for further metabolic investigations of Fuzi in vivo. 相似文献
12.
Si‐Ming Shan Jian‐Guang Luo Ke Pan Hong‐yan Zou Ling‐Yi Kong 《Biomedical chromatography : BMC》2016,30(11):1861-1872
Lycodine‐type alkaloids have gained significant interest owing to their unique skeletal characteristics and acetylcholinesterase activity. This study established a rapid and reliable method using ultra‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UPLC‐ESI‐Q/TOF‐MS/MS) for comprehensive characterization of lycodine‐type alkaloids for the first time. The lycodine‐type alkaloids were detected successfully from Lycopodiastrum casuarinoides, Huperzia serrata and Phlegmarirus carinatus in seven plants of the Lycopodiaceae and Huperziaceae families, based on the established characteristic MS fragmentation of five known alkaloids. Furthermore, a total of 13 lycodine‐type alkaloids were identified, of which three pairs of isomers were structurally characterized and differentiated. This study further improves mass analysis of lycodine‐type alkaloids and demonstrates the superiority of UPLC with a high‐resolution mass spectrometer for the rapid and sensitive structural elucidation of other trace active compounds. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
Simultaneous determination of ten flavonoids of crude and wine‐processed Radix Scutellariae aqueous extracts in rat plasma by UPLC‐ESI‐MS/MS and its application to a comparative pharmacokinetic study 下载免费PDF全文
Xiao‐Bing Cui Xiao‐Cui Qian Ping Huang Yong‐Xin Zhang Jun‐Song Li Guang‐Ming Yang Bao‐Chang Cai 《Biomedical chromatography : BMC》2015,29(7):1112-1123
Radix Scutellariae (RS) is a herbal medicine with various pharmacological activities to treat inflammation, respiratory and gastrointestinal infections, etc. In this study, a rapid, sensitive and selective UPLC‐ESI‐MS/MS method was developed for simultaneous determination of 10 flavonoids – scutellarin, scutellarein, chrysin, wogonin, baicalein, apigenin, wogonoside, oroxylin A‐7‐O‐glucuronide, oroxylin A and baicalin – from RS aqueous extracts in rat plasma with propyl paraben as internal standard (IS). Chromatographic separation was achieved on a C18 column using gradient elution with the mobile phase consisting of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min. The detection was performed in multiple reaction monitoring mode using electrospray ionization in negative mode. The validated method showed good linearity over a wide concentration range (r >0.9935). The intra‐ and interday assay variabilities were <9.5% and <12.4% for all analytes, respectively. The extraction recovery ranged from 71.2 to 89.7% for each analyte and IS. This method was successfully applied to pharmacokinetic comparision after oral administration of crude and wine‐processed RS aqueous extracts. There were significant differences in some pharmacokinetic parameters of most analytes between crude and wine‐processed RS. This suggested that wine‐processing exerted effects absorption of most flavonoids. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
14.
Maja Friščić Franz Bucar Kroata Hazler Pilepić 《Journal of mass spectrometry : JMS》2016,51(12):1211-1236
Plants produce a great number of metabolites with potentially useful biological activities. Species from the genus Globularia (Plantaginaceae) are known as sources of different phenolic and iridoid compounds. Globularia alypum L. is a medicinal plant used as a healing agent in many Mediterranean countries. Similarities in phytochemical composition are often observed for related species. For Globularia spp., such findings were mostly based on identification of several isolated compounds from distinct species. To our knowledge, this is the first study that enables simultaneous comparison of phytochemical profiles from several members of the genus Globularia. Liquid chromatography‐photodiode array detection‐electrospray ionization‐tandem mass spectrometry was used for the analysis of methanolic extracts of aerial parts obtained from four Globularia species (G. alypum, G. punctata, G. cordifolia and G. meridionalis). In total, 85 compounds were identified or tentatively identified based on comparison of their retention time, UV and MSn (up to MS4) spectra to those of standard compounds and/or to literature data. Among these, high relative amounts of bioactive molecules such as globularin, globularifolin, asperuloside and verbascoside (acteoside) were found. Apart from providing new insights into the phytochemistry and chemotaxonomy of selected Globularia species, results of this study complement existing MS/MS spectral data and could enable easier mass spectrometric profiling of certain bioactive compounds such as iridoids and phenylethanoids in related plant species, genera and families. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
16.
Metabolic profiling study on potential toxicity and immunotoxicity‐biomarker discovery in rats treated with cyclophosphamide using HPLC‐ESI‐IT‐TOF‐MS 下载免费PDF全文
Jing Li Wensi Lin Weiwei Lin Peng Xu Jianmei Zhang Haisong Yang Xiaomei Ling 《Biomedical chromatography : BMC》2015,29(5):768-776
Despite the recent advances in understanding toxicity mechanism of cyclophosphamide (CTX), the development of biomarkers is still essential. CTX‐induced immunotoxicity in rats by a metabonomics approach was investigated using high‐performance liquid chromatography coupled with ion trap time‐of‐flight mass spectrometry (HPLC‐ESI‐IT‐TOF‐MS). The rats were orally administered CTX (30 mg/kg/day) for five consecutive days, and on the fifth day samples of urine, thymus and spleen were collected and analyzed. A significant difference in metabolic profiling was observed between the CTX‐treated group and the control group by partial least squares‐discriminant analysis (PLS‐DA), which indicated that metabolic disturbances of immunotoxicity in CTX‐treated rats had occurred. One potential biomarker in spleen, three in urine and three in thymus were identified. It is suggested that the CTX‐toxicity mechanism may involve the modulation of tryptophan metabolism, phospholipid metabolism and energy metabolism. This research can help to elucidate the CTX‐influenced pathways at a low dose and can further help to indicate the patients' pathological status at earlier stages of toxicological progression after drug administration. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
17.
Moying Li Xinyi Yue Yongjian Gao Bei Zhang Chunping Yuan Tong Wu 《Journal of mass spectrometry : JMS》2020,55(10)
Yupingfeng granules (YPFG) were isolated from a traditional Chinese medicine (TCM) formulation composed of three herbs (Astragali Radix, Atractylodis Macrocephalae Rhizoma, and Saposhnikoviae Radix). This formulation is used in TCM to tonify qi, and it can help strengthen exterior and reduce sweating. Nevertheless, the active components of YPFG remain unclear. In this study, the chemical constituents of YPFG were systematically characterized by ultra‐performance liquid chromatography coupled with electrospray ionization/ quadrupole time‐of‐flight mass spectrometry (UPLC‐ESI‐Q‐TOF‐MS). Fifty‐eight compounds, namely, 20 flavonoids, 19 saponins, nine organic acids, four volatile coumarins, three lactones, one alkaloid, and two other components, were identified. In addition, the constituents of YPFG with the potential for in vivo bioactivities following oral administration were investigated in Sprague–Dawley rats. Thirteen compounds, namely, 11 flavonoid‐related and 2 saponin‐related components, were detected in rat plasma. After enriching flavonoids and saponins in YPFG by extraction, the extracts and YPFG were administrated to immunosuppressed rats, respectively. Plasma samples were analyzed by UPLC‐ESI‐Q‐TOF‐MS, and principal component analysis (PCA) confirmed that the extracts had similar effects to YPFG. This method could discover active ingredients in YPFG quickly and provide a scientific basis for quality control and mechanism research. 相似文献
18.
Fenrong Wang Yun Wu Yu Ai Qiaoxia Bian Wen Ma David Y.‐W. Lee Ronghua Dai 《Biomedical chromatography : BMC》2016,30(3):396-409
Huo Luo Xiao Ling Dan (HLXLD), a Chinese herbal formula, is used in folk medicine for the treatment of arthritis and other chronic inflammatory diseases. However, the in vivo integrated metabolism of its multiple components remains unknown. In this paper, an ultra‐performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry (UPLC‐Q‐TOF‐MS) method was developed for detection and identification of HLXLD metabolites in rat urine at high and normal clinical dosages. The prototype constituents and their metabolites in urine were analyzed. The mass measurements were accurate within 8 ppm, and subsequent fragment ions offered higher quality structural information for interpretation of the fragmentation pathways of various compounds. A total of 85 compounds were detected in high dosages urine samples by a highly sensitive extracted ion chromatograms method, including 31 parent compounds and 54 metabolites. Our results indicated that phase 2 reactions (e.g. glucuronidation, glutathionidation and sulfation) were the main metabolic pathways of lactones, alkaloids and flavones, while phase I reactions (e.g. hydrogenation and hydroxylation) were the major metabolic reaction for coumarins, paeoniflorin and iridoids. This investigation provided important structural information on the metabolism of HLXLD and provided scientific evidence to obtain a more comprehensive metabolic profile. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
19.
Olajide Olaleye Yan Zhu Xiu‐Mei Gao Li‐Yuan Kang Tao Zhao 《Biomedical chromatography : BMC》2013,27(5):655-663
Antioxidants and oxidative stress play a critical role in cardiovascular diseases. Danhong injection (DHI) is a well prescribed cardiovascular medication in China, but its detailed chemical basis and mechanisms of action remain unknown. To prove the antioxidant activity of DHI, its free radical scavenging capacity (RSC) was assessed by 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) spectrophotometric assay. The 50% radical scavenging activity value was 1:129.2 mL/mL, against 0.95 mm DPPH. To further identify the antioxidant compounds, modified thin‐layer chromatography combined with DPPH bioautography assay was used. Compared with vitamin C, 11 of 16 available compounds displayed strong antioxidant activity, which were also detected in rat serum after intravenous administration of DHI by ultra‐performance liquid chromatography–tandem mass spectrometry, except for hydroxysafflor yellow A. Therefore, 10 antioxidants remaining in the blood as key markers, and six other compounds as general markers, were employed to perform the quality control of DHI by ultra‐performance liquid chromatography–ultraviolet detection after systematic methodological validation. The analytical results indicate a high correlation (r = 0.9) between the total content of those antioxidants remaining in blood and RSC of DHI among 10 batches. Further, the antioxidant profiling and chemical marker quantification as dual‐standard quality assessment was successfully applied to evaluate Danshen and safflower injections. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
20.
Tian Zheng Bei Cao Mengjie Li Jian Shi Nan Aa Xinwen Wang Chunyan Zhao Jiye Aa Guangji Wang 《Biomedical chromatography : BMC》2016,30(3):337-342
Tumor markers are most popularly used in diagnosis of various cancers clinically. However, the confounding factors of individual background diversities, such as genetics, food preferences, living styles, physical exercises, etc., greatly challenge the identification of tumor markers. Study of the metabolic impact of inoculated tumors on model animals can facilitate the identification of metabolomic markers relevant to tumor insult. In this study, serum metabolites from nude mice (n = 14) inoculated with human H460 cells (human nonsmall cell lung carcinoma) were profiled using gas chromatography time‐of‐flight mass spectrometry. The mice with inoculated tumors showed an obviously different metabolic pattern from the control; identification of the discriminatory metabolites suggested the metabolic perturbation of free fatty acids, amino acids, glycolysis and tricarboxylic acid (TCA) cycle turnover. The significantly decreased TCA intermediates, free fatty acids, 3‐hydroxybutyric acid and fluctuating amino acids (t‐test, p < 0.05) in serum of tumor‐bearing mice characterized the metabolic impact of local inoculated H460 tumor cells on the whole system. This indicates that they are candidate metabolomic markers for translational study of lung cancer, clinically. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献