首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2018,30(9):1929-1937
An electrochemical sensor based on electropolymerization of β‐cyclodextrin (β‐CD) on a glassy carbon electrode (GCE) was developed for the determination of imidacloprid (IMP). That insecticide is the most commonly used insecticides globally and has been related to the death of bee colonies around the world are imperative. So the development of a simple, cheap and sensitive method for IMP determination is essential. This work aims the modification of a GCE by β‐CD film. The analytical response obtained with GCCE/β‐CD in the presence of the IMP showed an increase in the peak current variation of 947 % in relation to the bare GCE, indicating that the analyte was encapsulated in the β‐CD increasing the detection sensitivity. The followed experimental conditions were optimized: potential range (−1.3 to 0.9 V), presence or absence of dissolved oxygen (presence) and stirring during the electropolymerization (with agitation), number of cycles (5 scans), electrolyte pH (pH=5.0), scan rate (100 mV s−1) and concentration of β‐CD (6 mol L−1). The optimization promoted a peak current variation increase of 57 %, developing a more sensitivity methodology.  相似文献   

2.
An electrochemical sensor of glassy carbon electrode modified with reduced graphene oxide and manganese (II) phthalocyanine (GCE/rGO/MnPc) was developed as an effective alternative in the determination of imidacloprid in honey samples. The peak current variation obtained with the proposed sensor, in the presence of imidacloprid, was higher compared to the bare GCE. The followed experimental conditions were optimized: reduced graphene oxide concentration (2.0 mg mL?1), manganese (II) phthalocyanine concentration (1.5 mg mL?1), electrolyte pH (6.5) and electrolyte concentration (1,50 mol L?1). The study also showed that the process of reduction of imidacloprid is irreversible and diffusion‐controlled, with a single reduction peak of approximately ?0.9 V corresponding to the reduction of the nitro group (?NO2) present in the structure, generating a derived from hydroxylamine, in a process involving about four electrons. The determination of imidacloprid in honey samples exhibited recovery values within the EPA range (between 90.5 and 101.9 %). The proposed sensor GCE/rGO/MnPc can be used as an effective alternative in the determination of imidacloprid in honey samples.  相似文献   

3.
β‐cyclodextrin (β‐CD) functionalized silver nanoparticles (AgNPs) and reduced graphene oxide (RGO) via one step electrochemical potentiodyanamic method has been prepared. Scanning electron microscopy, Energy‐Dispersive X‐ray spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry were used to study the role of β‐CD on preparation of AgNPs and RGO. RGO/β‐CD/AgNPs modified GCE showed good electrochemical activity towards electro‐oxidation of hydrazine in terms of decreasing the over potential and increasing the peak current. The kinetic parameters such as electron transfer coefficient (α) and diffusion coefficient (Do) of the modified electrode towards hydrazine were determined to be 0.66 and 0.97×10?6 cm2 s?1, respectively. The LOD of our sensor was many folds lower than that of recommended concentration of hydrazine in drinking water by United States Environmental Protection Agency and World Health Organization. The sensor exhibited a wide linear range from 0.08 to 1110 µM and a very low detection limit (LOD) of 1.4 nM. In addition, the sensor selectively determined hydrazine even in the presence of common interferents.  相似文献   

4.
In the present work, the oxidation of acetaminophen in the absence and presence of eflornithine was electrochemically investigated by means of cyclic voltammetry at a glassy carbon electrode (GCE). Our results indicate that N‐acetyl‐p‐benzoquinone imine (NAPQI) produced from two‐electron electrochemical oxidation of acetaminophen participates in a Michael addition reaction with eflornithine via an ECE mechanism. This fact was used for the determination of eflornithine using differential pulse voltammetry (DPV) technique on the surface of β‐Cyclodextrin modified glassy carbon (β‐CD/GC) electrode. β‐CD/GC electrode was prepared through an electrodeposition procedure and characterized by Fourier‐transform infrared spectroscopy (FT‐IR), Cyclic Voltammetry (CV), Field Emission Scanning Electron Microscopy (FESEM) and Energy‐dispersive X‐ray spectroscopy (EDS) techniques. Under optimum conditions, the β‐CD/GC electrode showed a good linearity as a function of the eflornithine concentration over the range from 5 to 100 μM with detection limit and quantification limit of 1.94 and 5.8 μM, respectively. Finally, the proposed protocol was confirmed to be successful in determination of eflornithine in human urine samples with good recovery, ranging from 97.2 % to 104.8 %.  相似文献   

5.
An electrochemical sensor for metronidazole (MTZ) was built via the surface modification of a carbon paste electrode (CPE) by a film obtained through electropolymerization of α‐cyclodextrin (CPEα‐CD). The CPEα‐CD was characterized by cyclic voltammetry (CV) and atomic force microscopy (AFM), by both techniques was demonstrated that the polymer film is coating the electrode surface. The electroreduction behaviour of MTZ in HClO4 media as a supporting electrolyte was studied by differential‐pulse voltammetric (DPV) technique. The DPV electrochemical process was observed to be diffusion controlled and irreversible. Under optimal conditions, the peak current was proportional to MTZ concentration in the range of 0.5 to 103.0 μM with a detection limit of 0.28±0.02 μM. The method was successfully applied to quantify of MTZ in pharmaceutical formulations. In addition, this proposed MTZ sensor exhibited good reproducibility, long‐term stability and fast current response.  相似文献   

6.
The graphene nanosheets/manganese oxide nanoparticles modified glassy carbon electrode (GC/GNSs/MnOx) was simply prepared by casting a thin film of GNSs on the GC electrode surface, followed by performing electrodeposition of MnOx at applied constant potential. The GC/GNSs/MnOx modified electrode shows high catalytic activity toward oxidation of L ‐cysteine. Hydrodynamic amperometry determination of L ‐cysteine gave linear responses over a concentration range up to 120 µM with a detection limit of 75 nM and sensitivity of 27 nA µM?1. The GC/GNSs/MnOx electrode appears to be a highly efficient platform for the development of sensitive, stable and reproducible L ‐cysteine electrochemical sensors.  相似文献   

7.
A simple glucose biosensor has been developed based on direct electrochemistry of glucose oxidase (GOx) immobilized on the reduced graphene oxide (RGO) and β‐cyclodextrin (CD) composite. A well‐defined redox couple of GOx appears with a formal potential of ~?0.459 V at RGO/CD composite. A heterogeneous electron transfer rate constant (Ks) has been calculated for GOx at RGO/CD as 3.8 s?1. The fabricated biosensor displays a wide response to glucose in the linear concentrations range from 50 µM to 3.0 mM. The sensitivity and limit of detection of the biosensor is estimated as 59.74 µA mM?1 cm?2 and 12 µM, respectively.  相似文献   

8.
《Electroanalysis》2017,29(4):1166-1171
We present an electrochemical biosensor for the analysis of nucleic acids upon hybridization on the β‐cyclodextrin (β‐CD)‐modified gold electrode. The strategy is based on the following: The 5’‐ferrocene‐labeled single stranded capture probe DNA (5’‐fc‐ss‐DNA) was incorporated into the cavity of thiolated β‐CD which was immobilized on the surface of gold electrode. After hybridization of complementary target DNA, hybridized double stranded DNA (ds‐DNA) was released from the cavity of β‐CD. The difference of electrochemical properties on the modified gold electrode was characterized by cyclic voltametry and surface plasmon resonance. We successfully applied this method to the investigation of the sensor responses due to hybridization on various concentrations of applied target DNA. As a result, the label‐free electrochemical DNA sensor can detect the target DNA with a detection limit of 1.08 nM. Finally, our method does not require either hybridization indicators or other signalling molecules such as DNA intercalaters which most of electrochemical hybridization detection systems require.  相似文献   

9.
《Electroanalysis》2018,30(9):2176-2184
The contamination of water and wastewater by emerging pollutants, due to the anthropogenic activities, are an environmental problem that generates several negative impacts. In this range of species, steroids have gaining notoriety because their action of endocrine‐disruption. In this work, they are called estrogenic phenolic compounds (EPCs): estrone (E1), estradiol (E2), ethinyl estradiol (EE2) and estriol (E3), for determination using an electrochemical sensor based on reduced graphene oxide (rGO) and molecularly imprinted polymer (MIP). The analytical method developed, allied with the experimental and operational optimizations, proved to be effective for the total quantification of the EPCs in river water. The method shows sensitivity of 1.12 μA/μmol L−1, detection limit of 26.8 nmol L−1 and linear range of 0.16–15 μmol L−1. The similar electrochemical behavior of the four compounds studied (E1, E2, EE2 and E3) and the efficiency of the modified composite (rGO, MIP) in the fabrication of the sensor resulted in high electrical conductivity and selective adsorptivity, respectively.  相似文献   

10.
《Electroanalysis》2018,30(2):288-295
Methotrexate (MTX) was used as an anti‐cancer drug, but its excessive use can cause serious side effects, it was necessary to monitor MTX in vivo. In this report, DNA was immobilized on a glassy carbon electrode (GCE) modified with graphene oxide (GO) to develop an electrochemical sensor for sensitive determination of MTX for the first time. The adsorptive voltammetric behaviors of MTX on DNA sensor were investigated using differential pulse voltammetry (DPV). The peak current response of guanine in DNA was used as a determination signal of MTX in acetate buffer solution pH 4.6. Voltammetric investigations revealed that the proposed method could determine MTX in the concentration range from 5.5×10−8 to 2.2×10−6 mol L−1 with a lower detection limit of 7.6×109 mol L−1 (S/N=3). The method was applied to detect MTX in human blood serum and diluted urine samples with excellent recoveries of 97.4–102.5 %. Compared with the previous studies, the DNA/GO/GCE electrode constructed by us based on the change rate of guanine current (R%) in DNA, proportionally reflecting the MTX concentration, is simple and sensitive .  相似文献   

11.
Alloxan is a toxic reagent that strongly induces the diabetes by destroying insulin‐producing β‐cells in the pancreas of living organisms. The reduction product of alloxan is dialuric acid, which is responsible for the intracellular generation of ROS to enhance the stress in living cells to cause kidney disease or diabetic nephropathy. Herein, we studied for the first time the electrochemical properties of alloxan on reduced graphene oxide modified glassy carbon electrode (rGO/GCE) in 0.1 M phosphate buffer solution (PBS) at pH 7. The obtained results were compared with graphene oxide modified GCE (GO/GCE) and bare GCE surfaces. The modified rGO/GCE showed well defined redox couple with 10 fold increase in both reduction as well as oxidation peak current for alloxan than that of GO/GCE and bare GCE. Differential pulse voltammetry (DPV) technique shows the linear increase in both oxidation and reduction peak current of alloxan in the range of 30 μM to 3 mM with LOD of 1.2 μM. An amperometric signal of alloxan is also increases with respect to each addition of 50 μM of alloxan on rGO/GCE at constant potential of ?0.05 V. The linear range of alloxan is observed between 50 μM to 750 μM (S/N=3). This kind of rGO/GCE surface is more suitable platform or sensor matrix for estimating unknown concentration of alloxan molecule in the real biological systems.  相似文献   

12.
In this work a carbon paste electrode modified with multiwalled carbon nanotubes/β‐cyclodextrin (MWCNTs/β‐CD) was constructed and applied to the determination of nifedipine. The electrochemical behavior of nifedipine at this electrode was investigated using cyclic voltammetry and differential pulse voltammetry. Characterization of the modified electrode was conducted with electrochemical impedance spectroscopy and scanning electron microscopy. After adsorption of nifedipine on the MWCNTs/β‐CD paste electrode at 0.0 V for 6 min, a well defined reduction peak was produced in sodium hydroxide of 0.05 M. The calibration curve was linear from 7.0×10?8 to 1.5×10?5 M. The detection limit was obtained as 2.5×10?8 M. The results demonstrated that this electrochemical sensor has excellent sensitivity and selectivity. This sensor was applied for determination of nifedipine in drug dosage and blood serum with excellent recoveries.  相似文献   

13.
A rapid method for sensitive voltammetric determination of dinotefuran residue was reported. The proposed method was based on the electrocatalytic reduction of dinotefuran on β‐cyclodextrin‐graphene composite modified glassy carbon electrode (β‐CD‐rGO/GCE), giving rise to a higher reduction signal to dinotefuran relative to the bare (GCE) and graphene modified electrode (rGO/GCE). Moreover, a further signal enhancement was observed when the modified electrode incubated in solution at low temperature (0 °C) for a short time. The reduction mechanism and binding affinity were also discussed. The external standard calibration curve was obtained from linear sweep voltammetry in the range of 0.5 to 16.0 μM with a detection limit of 0.10 μM. In addition to optimization of pretreatment, this electrochemical method has been applied to the dinotefuran residue determination in millet samples with the detection limit of 0.01 mg kg?1 and compared with an high performance liquid chromatography method. The proposed electrode and analysis methods were proven to be sensitive, accurate and rapid under the used conditions.  相似文献   

14.
制备了一种二氧化锆/还原氧化石墨烯(ZrO2NPs/rGO)复合材料修饰电极的亚硝酸盐电化学传感器,并成功用于亚硝酸盐的检测.采用循环伏安法和电流-时间曲线考察了修饰电极的电化学行为.实验结果表明,ZrO2NPs/rGO复合材料修饰电极对亚硝酸盐具有良好的电流响应.在最优实验条件下,电流-时间曲线中的电流响应信号与亚硝酸盐浓度在3.0×10Symbolm@@_7~1.0×10Symbolm@@_6 mol/L和1.0×10Symbolm@@_6~6.0×10Symbolm@@_6 mol/L的范围内呈良好的线性关系,检测限为1.0×10Symbolm@@_7 mol/L(S/N 3).该传感器灵敏性高、稳定性和重现性好.使用此传感器检测实际样品香肠中的亚硝酸盐的回收率为93.7%~110.4%,相对标准偏差为1.6%~2.1%.  相似文献   

15.
《Electroanalysis》2017,29(2):587-594
A sensitive and selective hydrazine sensor was developed by β‐cyclodextrin modified palladium nanoparticles decorated reduced graphene oxide (PdNPs‐β‐CD/rGO) nanocomposite. The PdNPs‐β‐CD/rGO hybrid material was prepared by simple electrochemical method. The hydrophobic cavity of β‐CD ineracts with palladium nanoparticles by hydrophobic interaction and further it is uniformly assembled on the rGO surface through hydrogen bond formation, which is clearly confirmed by FT‐IR, FESEM and TEM. The high electrocatalytic activity of hydrazine oxidation was observed at −0.05 V (vs. Ag/AgCl) on PdNPs‐β‐CD/rGO modified electrode; due to the excellent stabilization, high catalytic activity and large surface area of the PdNPs‐β‐CD/rGO composite. The PdNPs‐β‐CD/rGO fabricated hydrazine sensor exhibited an excellent analytical performance, including high sensitivity (1.95 μA μM−1 cm−2), lower detection limit (28 nM) and a wide linear range (0.05 to 1600 μM). We also demonstrated that the PdNPs‐β‐CD/rGO nanocomposite modified electrode is a highly selective and sensitive sensor towards detection of hydrazine among the various interfering species. Hence, the proposed hydrazine sensor is able to determine hydrazine in different water samples.  相似文献   

16.
This work presents a sensitive voltammetric method for determination of curcumin by using a electrochemically reduced graphene oxide (ERGO) modified glass carbon electrode (GCE) in 100 mM KCl‐10 mM sodium phosphate buffer solution (pH 7.40). The electrochemical behaviors of curcumin at ERGO/GCE were investigated by cyclic voltammetry, suggesting that the ERGO/GCE exhibits excellent electrocatalytic activity towards curcumin, compared with bare GCE and GO/GCE electrodes. The electrochemical reaction mechanisms of curcumin, demethoxycurcumin and bisdemethoxycurcumin at the ERGO/GCE were also investigated and discussed systematically. Under physiological condition, the modified electrode showed linear voltammetric response from 0.2 μM to 60.0 μM for curcumin, with the detection limit of 0.1 μm. This work demonstrates that the graphene‐modified electrode is a promising strategy for electrochemical determination of biological important phenolic compounds.  相似文献   

17.
An electrochemical sensor has been developed for the determination of the herbicide bentazone, based on a GC electrode modified by a combination of multiwalled carbon nanotubes (MWCNT) with β‐cyclodextrin (β‐CD) incorporated in a polyaniline film. The results indicate that the β‐CD/MWCNT modified GC electrode exhibits efficient electrocatalytic oxidation of bentazone with high sensitivity and stability. A cyclic voltammetric method to determine bentazone in phosphate buffer solution at pH 6.0, was developed, without any previous extraction, clean‐up, or derivatization steps, in the range of 10–80 µmol L?1, with a detection limit of 1.6 µmol L?1 in water. The results were compared with those obtained by an established HPLC technique. No statistically significant differences being found between both methods.  相似文献   

18.
Mixed metals alloy nanoparticles supported on carbon nanomaterial are the most attractive candidates for the fabrication of non‐enzymatic electrochemical sensor with enhanced electrochemical performance. In this study, palladium‐manganese alloy nanoparticles supported on reduced graphene oxide (Pd?Mn/rGO) are prepared by a simple reduction protocol. Further, a novel enzyme‐free glucose sensing platform is established based on Pd?Mn/rGO. The successful fabrication of Pd?Mn alloy nanoparticles and their attachment at rGO are thoroughly characterized by various microscopic and spectroscopic techniques such as XRD, Raman, TEM and XPS. The electrochemical activity and sensing features of designed material towards glucose detection are explored by amperometric measurments in 0.1 M NaOH at the working voltage of ?0.1 V. Thanks to the newly designed Pd?Mn/rGO nanohybrid for their superior electrorochemical activity towards glucose comprising the admirable sensing features in terms of targeted selectivity, senstivity, two linear parts and good stability. The enhanced electrochemical efficacy of Pd?Mn/rGO electrocatalyst may be credited to the abundant elecrocatalytic active sites formed during the Pd?Mn alloying and the electron transport ability of rGO that augment the electron shuttling phenomenon between the electrode material and targeted analyte.  相似文献   

19.
《Electroanalysis》2018,30(8):1678-1688
In this work, an electrochemical sensor was constructed by applying two successive thin layers of glycine‐carbon nanotubes mixture and β‐cyclodextrin (CNTs‐Gly)/CD over glassy carbon electrode surface for some neurotransmitters determination. A host‐guest interaction between CD and neurotransmitters molecules is expected and resulted in enhanced sensitivity, selectivity and stability of sensor response. Other components of the sensor are crucial for the unique electrochemical response. Carbon nanotubes allowed large surface area for glycine distribution that provided hydrogen bonding to CD moieties and contributed to facilitated charge transfer. It was possible to determine 3,4‐dihydroxy phenyl acetic acid (DOPAC) in the linear range of 0.1 μmol L−1 to 80 μmol L−1 with detection limit of 9.40 nmol L−1, quantification limit of 31.5 nmol L−1 and sensitivity of 4.16 μA/μmol L−1. The proposed sensor was applied in synthetic cerebrospinal fluids samples using random standard addition method. Also, the proposed sensor was used to determine DOPAC in presence of common interferences and acceptable recovery results were achieved for its analysis in real blood serum. Figures of merit for (CNTs‐Gly)/CD composite in terms of precision, robustness, repeatability and reproducibility were reported.  相似文献   

20.
In this work, an electrochemical sensor based on a cyclodextrin‐graphene hybrid nanosheets modified glassy carbon electrode (CD‐GNs/GCE) was proposed for the ultrasensitive determination of doxorubicin and methotrexate. The peak currents of doxorubicin and methotrexate on the CD‐GNs/GCE increased 26.5 and 23.7 fold, respectively, compared to the results obtained on the bare GCE. Under optimized conditions, the linear response ranges for doxorubicin and methotrexate are 10 nM–0.2 µM and 0.1 µM–1.0 µM, with detection limits of 0.1 nM and 20 nM, respectively. The sensor showed the advantages of simple preparation, low cost, high sensitivity, good stability and reproducibility. These properties make the prepared sensor a promising tool for the determination of trace amounts of doxorubicin and methotrexate in biological, clinical and pharmaceutical fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号