首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of Graph Theory》2018,88(3):375-384
Let and denote the minimum size of a decycling set and maximum genus of a graph G, respectively. For a connected cubic graph G of order n, it is shown that . Applying the formula, we obtain some new results on the decycling number and maximum genus of cubic graphs. Furthermore, it is shown that the number of vertices of a decycling set S in a k‐regular graph G is , where c and are the number of components of and the number of edges in , respectively. Therefore, S is minimum if and only if is minimum. As an application, this leads to a lower bound for of a k‐regular graph G. In many cases this bound may be sharp.  相似文献   

2.
《Journal of Graph Theory》2018,89(2):194-213
We first prove that for every vertex x of a 4‐connected graph G, there exists a subgraph H in G isomorphic to a subdivision of the complete graph K4 on four vertices such that is connected and contains x. This implies an affirmative answer to a question of Kühnel whether every 4‐connected graph G contains a subdivision H of K4 as a subgraph such that is connected. The motor for our induction is a result of Fontet and Martinov stating that every 4‐connected graph can be reduced to a smaller one by contracting a single edge, unless the graph is the square of a cycle or the line graph of a cubic graph. It turns out that this is the only ingredient of the proof where 4‐connectedness is used. We then generalize our result to connected graphs of minimum degree at least 4 by developing the respective motor, a structure theorem for the class of simple connected graphs of minimum degree at least 4. A simple connected graph G of minimum degree 4 cannot be reduced to a smaller such graph by deleting a single edge or contracting a single edge and simplifying if and only if it is the square of a cycle or the edge disjoint union of copies of certain bricks as follows: Each brick is isomorphic to K3, K5, K2, 2, 2, , , or one the four graphs , , , obtained from K5 and K2, 2, 2 by deleting the edges of a triangle, or replacing a vertex x by two new vertices and adding four edges to the endpoints of two disjoint edges of its former neighborhood, respectively. Bricks isomorphic to K5 or K2, 2, 2 share exactly one vertex with the other bricks of the decomposition, vertices of degree 4 in any other brick are not contained in any further brick of the decomposition, and the vertices of a brick isomorphic to K3 must have degree 4 in G and have pairwise no common neighbors outside that brick.  相似文献   

3.
4.
《Journal of Graph Theory》2018,88(2):294-301
Suppose is a loopless graph and is the graph obtained from G by subdividing each of its edges k () times. Let be the set of all spanning trees of G, be the line graph of the graph and be the number of spanning trees of . By using techniques from electrical networks, we first obtain the following simple formula: Then we find it is in fact equivalent to a complicated formula obtained recently using combinatorial techniques in [F. M. Dong and W. G. Yan, Expression for the number of spanning trees of line graphs of arbitrary connected graphs, J. Graph Theory. 85 (2017) 74–93].  相似文献   

5.
《Journal of Graph Theory》2018,87(3):305-316
For a finite set V and a positive integer k with , letting be the set of all k‐subsets of V, the pair is called the complete k‐hypergraph on V, while each k‐subset of V is called an edge. A factorization of the complete k‐hypergraph of index , simply a ‐factorization of order n, is a partition of the edges into s disjoint subsets such that each k‐hypergraph , called a factor, is a spanning subhypergraph of . Such a factorization is homogeneous if there exist two transitive subgroups G and M of the symmetric group of degree n such that G induces a transitive action on the set and M lies in the kernel of this action. In this article, we give a classification of homogeneous factorizations of that admit a group acting transitively on the edges of . It is shown that, for and , there exists an edge‐transitive homogeneous ‐factorization of order n if and only if is one of (32, 3, 5), (32, 3, 31), (33, 4, 5), , and , where and q is a prime power with .  相似文献   

6.
《Journal of Graph Theory》2018,88(2):237-254
Let be k nonnegative integers. A graph G is ‐colorable if the vertex set can be partitioned into k sets , such that the subgraph , induced by , has maximum degree at most for . Let denote the family of plane graphs with neither adjacent 3‐cycles nor 5‐cycles. Borodin and Raspaud (2003) conjectured that each graph in is (0, 0, 0)‐colorable (which was disproved very recently). In this article, we prove that each graph in is (1, 1, 0)‐colorable, which improves the results by Xu (2009) and Liu‐Li‐Yu (2016).  相似文献   

7.
Let be a plane graph with the sets of vertices, edges, and faces V, E, and F, respectively. If one can color all elements in using k colors so that any two adjacent or incident elements receive distinct colors, then G is said to be entirely k‐colorable. Kronk and Mitchem [Discrete Math 5 (1973) 253‐260] conjectured that every plane graph with maximum degree Δ is entirely ‐colorable. This conjecture has now been settled in Wang and Zhu (J Combin Theory Ser B 101 (2011) 490–501), where the authors asked: is every simple plane graph entirely ‐colorable? In this article, we prove that every simple plane graph with is entirely ‐colorable, and conjecture that every simple plane graph, except the tetrahedron, is entirely ‐colorable.  相似文献   

8.
《Journal of Graph Theory》2018,88(3):434-448
The natural infinite analog of a (finite) Hamilton cycle is a two‐way‐infinite Hamilton path (connected spanning 2‐valent subgraph). Although it is known that every connected 2k‐valent infinite circulant graph has a two‐way‐infinite Hamilton path, there exist many such graphs that do not have a decomposition into k edge‐disjoint two‐way‐infinite Hamilton paths. This contrasts with the finite case where it is conjectured that every 2k‐valent connected circulant graph has a decomposition into k edge‐disjoint Hamilton cycles. We settle the problem of decomposing 2k‐valent infinite circulant graphs into k edge‐disjoint two‐way‐infinite Hamilton paths for , in many cases when , and in many other cases including where the connection set is or .  相似文献   

9.
《Journal of Graph Theory》2018,88(2):271-283
Let G be a finite group and a class function. Let be a directed graph with for each vertex a cyclic order of the edges incident to it. The cyclic orders give a collection F of faces of H. Define the partition function , where denotes the product of the κ‐values of the edges incident with v (in cyclic order), where the inverse is taken for edges leaving v. Write , where the sum runs over irreducible representations λ of G with character and with for every λ. When H is connected, it is proved that , where 1 is the identity element of G. Among the corollaries, a formula for the number of nowhere‐identity G‐flows on H is derived, generalizing a result of Tutte. We show that these flows correspond bijectively to certain proper G‐colorings of a covering graph of the dual graph of H. This correspondence generalizes coloring‐flow duality for planar graphs.  相似文献   

10.
A graph G is equimatchable if each matching in G is a subset of a maximum‐size matching and it is factor critical if has a perfect matching for each vertex v of G. It is known that any 2‐connected equimatchable graph is either bipartite or factor critical. We prove that for 2‐connected factor‐critical equimatchable graph G the graph is either or for some n for any vertex v of G and any minimal matching M such that is a component of . We use this result to improve the upper bounds on the maximum number of vertices of 2‐connected equimatchable factor‐critical graphs embeddable in the orientable surface of genus g to if and to if . Moreover, for any nonnegative integer g we construct a 2‐connected equimatchable factor‐critical graph with genus g and more than vertices, which establishes that the maximum size of such graphs is . Similar bounds are obtained also for nonorientable surfaces. In the bipartite case for any nonnegative integers g, h, and k we provide a construction of arbitrarily large 2‐connected equimatchable bipartite graphs with orientable genus g, respectively nonorientable genus h, and a genus embedding with face‐width k. Finally, we prove that any d‐degenerate 2‐connected equimatchable factor‐critical graph has at most vertices, where a graph is d‐degenerate if every its induced subgraph contains a vertex of degree at most d.  相似文献   

11.
We study the following problem: given a real number k and an integer d, what is the smallest ε such that any fractional ‐precoloring of vertices at pairwise distances at least d of a fractionally k‐colorable graph can be extended to a fractional ‐coloring of the whole graph? The exact values of ε were known for and any d. We determine the exact values of ε for if , and if , and give upper bounds for if , and if . Surprisingly, ε viewed as a function of k is discontinuous for all those values of d.  相似文献   

12.
We show that a k‐edge‐connected graph on n vertices has at least spanning trees. This bound is tight if k is even and the extremal graph is the n‐cycle with edge multiplicities . For k odd, however, there is a lower bound , where . Specifically, and . Not surprisingly, c3 is smaller than the corresponding number for 4‐edge‐connected graphs. Examples show that . However, we have no examples of 5‐edge‐connected graphs with fewer spanning trees than the n‐cycle with all edge multiplicities (except one) equal to 3, which is almost 6‐regular. We have no examples of 5‐regular 5‐edge‐connected graphs with fewer than spanning trees, which is more than the corresponding number for 6‐regular 6‐edge‐connected graphs. The analogous surprising phenomenon occurs for each higher odd edge connectivity and regularity.  相似文献   

13.
For positive integers and m , let be the smallest integer such that for each graph G with m edges there exists a k‐partition in which each contains at most edges. Bollobás and Scott showed that . Ma and Yu posed the following problem: is it true that the limsup of tends to infinity as m tends to infinity? They showed it holds when k is even, establishing a conjecture of Bollobás and Scott. In this article, we solve the problem completely. We also present a result by showing that every graph with a large k‐cut has a k‐partition in which each vertex class contains relatively few edges, which partly improves a result given by Bollobás and Scott.  相似文献   

14.
We present a transformation on a chordal 2‐connected simple graph that decreases the number of spanning trees. Based on this transformation, we show that for positive integers n, m with , the threshold graph having n vertices and m edges that consists of an ‐clique and vertices of degree 2 is the only graph with the fewest spanning trees among all 2‐connected chordal graphs on n vertices and m edges.  相似文献   

15.
A coloring of the edges of a graph G is strong if each color class is an induced matching of G. The strong chromatic index of G, denoted by , is the least number of colors in a strong edge coloring of G. Chang and Narayanan (J Graph Theory 73(2) (2013), 119–126) proved recently that for a 2‐degenerate graph G. They also conjectured that for any k‐degenerate graph G there is a linear bound , where c is an absolute constant. This conjecture is confirmed by the following three papers: in (G. Yu, Graphs Combin 31 (2015), 1815–1818), Yu showed that . In (M. Debski, J. Grytczuk, M. Sleszynska‐Nowak, Inf Process Lett 115(2) (2015), 326–330), D?bski, Grytczuk, and ?leszyńska‐Nowak showed that . In (T. Wang, Discrete Math 330(6) (2014), 17–19), Wang proved that . If G is a partial k‐tree, in (M. Debski, J. Grytczuk, M. Sleszynska‐Nowak, Inf Process Lett 115(2) (2015), 326–330), it is proven that . Let be the line graph of a graph G, and let be the square of the line graph . Then . We prove that if a graph G has an orientation with maximum out‐degree k, then has coloring number at most . If G is a k‐tree, then has coloring number at most . As a consequence, a graph with has , and a k‐tree G has .  相似文献   

16.
Thomassen proved that every ‐connected graph G contains an induced cycle C such that is k‐connected, establishing a conjecture of Lovász. In general, one could ask the following question: For any positive integers , does there exist a smallest positive integer such that for any ‐connected graph G, any with , and any , there is an induced cycle C in such that and is l‐connected? The case when is a well‐known conjecture of Lovász that is still open for . In this article, we prove and . We also consider a weaker version: For any positive integers , is there a smallest positive integer such that for every ‐connected graph G and any with , there is an induced cycle C in such that is l‐connected? The case when was studied by Thomassen. We prove and .  相似文献   

17.
In this article, we prove three theorems. The first is that every connected graph of order n and size m has an induced forest of order at least with equality if and only if such a graph is obtained from a tree by expanding every vertex to a clique of order either 4 or 5. This improves the previous lower bound of Alon–Kahn–Seymour for , and implies that such a graph has an induced forest of order at least for . This latter result relates to the conjecture of Albertson and Berman that every planar graph of order n has an induced forest of order at least . The second is that every connected triangle‐free graph of order n and size m has an induced forest of order at least . This bound is sharp by the cube and the Wagner graph. It also improves the previous lower bound of Alon–Mubayi–Thomas for , and implies that such a graph has an induced forest of order at least for . This latter result relates to the conjecture of Akiyama and Watanabe that every bipartite planar graph of order n has an induced forest of order at least . The third is that every connected planar graph of order n and size m with girth at least 5 has an induced forest of order at least with equality if and only if such a graph is obtained from a tree by expanding every vertex to one of five specific graphs. This implies that such a graph has an induced forest of order at least , where was conjectured to be the best lower bound by Kowalik, Lu?ar, and ?krekovski.  相似文献   

18.
《Journal of Graph Theory》2018,88(2):347-355
A connected t‐chromatic graph G is double‐critical if is ‐colorable for each edge . A long‐standing conjecture of Erdős and Lovász that the complete graphs are the only double‐critical t‐chromatic graphs remains open for all . Given the difficulty in settling Erdős and Lovász's conjecture and motivated by the well‐known Hadwiger's conjecture, Kawarabayashi, Pedersen, and Toft proposed a weaker conjecture that every double‐critical t‐chromatic graph contains a minor and verified their conjecture for . Albar and Gonçalves recently proved that every double‐critical 8‐chromatic graph contains a K8 minor, and their proof is computer assisted. In this article, we prove that every double‐critical t‐chromatic graph contains a minor for all . Our proof for is shorter and computer free.  相似文献   

19.
《Journal of Graph Theory》2018,89(3):250-265
A vertex dominating path in a graph is a path P such that every vertex outside P has a neighbor on P. In 1988 H. Broersma [5] stated a result implying that every n‐vertex k‐connected graph G such that contains a vertex dominating path. We provide a short, self‐contained proof of this result and further show that every n‐vertex k‐connected graph such that contains a vertex dominating path of length at most , where T is a minimum dominating set of vertices. An immediate corollary of this result is that every such graph contains a vertex dominating path with length bounded above by a logarithmic function of the order of the graph. To derive this result, we prove that every n‐vertex k‐connected graph with contains a path of length at most , through any set of T vertices where .  相似文献   

20.
《Journal of Graph Theory》2018,88(4):577-591
Given a zero‐sum function with , an orientation D of G with in for every vertex is called a β‐orientation. A graph G is ‐connected if G admits a β‐orientation for every zero‐sum function β. Jaeger et al. conjectured that every 5‐edge‐connected graph is ‐connected. A graph is ‐extendable at vertex v if any preorientation at v can be extended to a β‐orientation of G for any zero‐sum function β. We observe that if every 5‐edge‐connected essentially 6‐edge‐connected graph is ‐extendable at any degree five vertex, then the above‐mentioned conjecture by Jaeger et al. holds as well. Furthermore, applying the partial flow extension method of Thomassen and of Lovász et al., we prove that every graph with at least four edge‐disjoint spanning trees is ‐connected. Consequently, every 5‐edge‐connected essentially 23‐edge‐connected graph is ‐extendable at any degree five vertex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号