首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fumarase catalyzes the interconversion of fumarate and l ‐malate in the tricarboxylic acid cycle. Fumarase insufficiencies were associated with increased levels of fumarate, decreased levels of malate and exacerbated salt‐induced hypertension. To gain insights into the metabolism profiles induced by fumarase insufficiency and identify key regulatory metabolites, we applied a GC–MS based metabolomics platform coupled with a network approach to analyze fumarase insufficient human umbilical vein endothelial cells (HUVEC) and negative controls. A total of 24 altered metabolites involved in seven metabolic pathways were identified as significantly altered, and enriched for the biological module of amino acids metabolism. In addition, Pearson correlation network analysis revealed that fumaric acid, l ‐malic acid, l ‐aspartic acid, glycine and l ‐glutamic acid were hub metabolites according to Pagerank based on their three centrality indices. Alanine aminotransferase and glutamate dehydrogenase activities increased significantly in fumarase deficiency HUVEC. These results confirmed that fumarase insufficiency altered amino acid metabolism. The combination of metabolomics and network methods would provide another perspective on expounding the molecular mechanism at metabolomics level.  相似文献   

2.
Lipopolysaccharide (LPS)‐induced inflammation occurs commonly and volatile oil from Angelica sinensis (VOAS) can be used as an anti‐inflammatory agent. The molecular mechanisms that allow the anti‐inflammatory factors to be expressed are still unknown. In this paper, we applied gas chromatography–mass spectrometry (GC–MS) and high‐performance liquid chromatography–time‐of‐flight mass spectrometry (LC‐Q/TOF–MS) based on a metabolomics platform coupled with a network approach to analyze urine samples in three groups of rats: one with LPS‐induced inflammation (MI); one with intervention with VOAS; and normal controls (NC). Our study found definite metabolic footprints of inflammation and showed that all three groups of rats, MI, intervention with VOAS and NC have distinct metabolic profiles in urine. The concentrations of 48 metabolites differed significantly among the three groups. The metabolites in urine were screened by the GC–MS and LC‐Q/TOF–MS methods. The significantly changed metabolites (p < 0.05, variable importance in projection > 1.5) between MI, NC and VOAS were included in the metabolic networks. Finally, hub metabolites were screened, including glycine, arachidonic acid, l ‐glutamate, pyruvate and succinate, which have high values of degree (k). the Results suggest that disorders of glycine, arachidonic acid, l ‐glutamate, pyruvate and succinate metabolism might play an important part in the predisposition and development of LPS‐induced inflammation. By applying metabolomics with network methods, the mechanisms of diseases are clearly elucidated.  相似文献   

3.
目的观察并分析凝血四项检测结果与不同比例下的全血与抗凝剂之间的关系。方法研究对象取2015年6月来湖北省宜昌市第二人民医院参加体检的110例健康人员,抽取全血血液样本后按照不同比例与抗凝剂混匀,常规分离血浆并测定受试者凝血酶时间(TT)、凝血酶原时间(PT)、激活部分促凝血酶原激酶时间(APTT)以及纤维蛋白原(FIB),并对研究结果相关数据作统计学处理。结果当血液量与抗凝剂比例为1∶5时,标本TT、PT、APTT以及FIB各项指标较1∶9时差异显著而具有统计学意义(P0.05);抗凝比例1∶7的情况下,TT指标差异与1∶9抗凝比例标本相比差异具有统计学意义(P0.05),而PT、FIB以及APTT三项指标差异并无统计学意义(P0.05);抗凝比例为1∶11与1∶13的情况下,TT指标与1∶9抗凝比例标本相比差异具有统计学意义(P0.05),而PT、FIB以及APTT三项指标差异并无统计学意义(P0.05)。结论凝血四项检测工作中,标本质量检测控制最关键的环节在于准确采集血液量,倘若采集血量过多或过少,导致与抗凝剂比例失调往往会影响测定结果准确性,检验科工作人员应予以重视。  相似文献   

4.
Cutaneous T‐cell lymphoma (CTCL) is a heterogeneous group of skin‐homing T‐cell neoplasms. Clinical management is stage based but diagnosis and prognosis could be extremely challenging. The presented study aims to explore the metabolic profiling of CTCL by an accelerated untargeted metabolomics data analysis tool “Mummichog” to facilitate the discoveries of potential biomarkers for clinical early stage diagnosis, prognosis, and treatments in CTCL. Ultra high‐performance liquid chromatography–quadrupole time‐of‐flight–based untargeted metabolomics were conducted on the skin and plasma of CTCL mice. It showed that the metabolism of skin changed greatly versus control samples in the development of CTCL. Increased l ‐glutamate and decreased adenosine monophosphate were the most essential metabolic features of CTCL tumor and tumor adjacent skins. Unique metabolism changes in tumor adjacent non‐involved skin tissues (ANIT) occurred in the progress of carcinogenesis, including upregulated cytidine‐5′‐triphosphate, aberrant biosynthesis of prostaglandins, pyrimidine, mevalonate pathway, and tryptophan degradation. Sharply elevated 5‐phospho‐α‐d ‐ribose 1‐diphosphate (PRPP) marked the final state of tumor in CTCL. In the plasma, systematic shifts in corticosterone, sphingolipid, and ceramide metabolism were found. These uncovered aberrant metabolites and metabolic pathways suggested that the metabolic reprogramming of PRPP in tumor tissues may cause the disturbance of cytidine and uridine metabolic homeostasis in ANIT. Accumulative cytidine‐5′‐triphosphate in ANIT may exert positive feedback on the PRPP level and leads to CTCL further development. In addition, the accelerated data analysis tool “Mummichog” showed good practicability and can be widely used in high‐resolution liquid chromatography mass spectrometry–based untargeted metabolomics.  相似文献   

5.
采用盐酸肾上腺素加冰水浴建立急性血瘀大鼠模型,使用超高效液相色谱-四极杆飞行时间质谱(UPLC-Q-TOF/MS)检测空白对照组与血瘀模型组中血浆代谢物,用主成分分析(PCA)、有监督偏最小二乘法判别分析(PLS-DA)及正交偏最小二乘法判别分析(OPLS-DA)对代谢组学数据进行多维统计分析,筛选潜在生物标志物。与对照组相比,在血瘀模型组大鼠血浆中检测出46个差异代谢物,血瘀模型组中乙酰胆碱、N6,N6,N6-三甲基-L-赖氨酸、胞嘧啶、乙酰肉碱等21个代谢物显著上调,吲哚丙酸、LysoPC(14:0)等25个代谢物显著下调,可能与脂质代谢、半乳糖代谢、亚油酸代谢、不饱和脂肪酸生物合成、糖酵解、花生四烯酸代谢等通路有关。代谢产物可作为血瘀证研究中的重要标记物,该研究结果有助于揭示血瘀证的发病机制,可为临床血瘀疾病的诊断及选用药物治疗提供思路,为后续治疗手段提供参考依据。  相似文献   

6.
Angelica sinensis (Danggui, DG) parched with alcohol (Jiu Danggui, JDG) and charred DG are the main processed products of DG, which are used to treat blood stasis syndrome (BSS). However, their therapeutic effect and mechanisms are still unclear. Based on an acute rat BSS model, the intervention effects of DG and its processed products (DGPPs) were evaluated by the hemorheology and coagulation function parameters. Meanwhile, plasma and urine metabolites were detected and analyzed by liquid chromatography coupled to quadrupole time‐of‐flight mass spectrometry and multivariate statistical analysis method. The results of hemorheology, coagulation function parameters and metabolomics all showed that the BSS model was successfully established, DGPPs intervention could significantly relieve rats BSS and the therapeutic effect of JDG was best. Moreover, 23 differential metabolites (14 in plasma and nine in urine) were identified that were closely related to the BSS, involving seven potential target metabolic pathways. DGPP intervention showed different degrees of reverse effect on these metabolites. JDG was the most effective owing to extensive regulation effect on differential metabolites. This study provides a reference for understanding the pathological mechanism of BSS and the mechanism of DGPPs, which lays a theoretical foundation for the rational use of DGPPs in clinical practice.  相似文献   

7.
8.
Intoxication by xenobiotics triggers the perturbation of metabolic fingerprints in biofluids, including the accumulation of xenobiotic compounds and the dysregulation of endogenous metabolites. In this work, an untargeted metabolomics workflow was developed to simultaneously profile both xenobiotic and endogenous metabolites for the identification of the xenobiotic origin and an in‐depth understanding of the intoxication mechanism. This workflow was demonstrated in a real‐world clinical case. Plasma samples were collected from four intoxicated children and another three healthy children. Untargeted metabolomics analysis was performed using ultraperformance liquid chromatography (UPLC) coupled to a high‐resolution mass spectrometer (HRMS) with data‐independent MSE acquisition. LC–MSE data was processed using an untargeted metabolomics data interpretation workflow, in which the identities of xenobiotics and altered endogenous metabolic features were determined via database searching. Five xenobiotic chemicals and 19 endogenous metabolites were found to be dysregulated. Combined with the clinical evidence, penfluridol was confirmed as the xenobiotic toxin. Furthermore, a mechanistic hypothesis was developed to explain the dysregulation of the four endogenous acyl‐carnitines. This workflow can be readily applied to a wide range of clinical toxicology cases, offering a powerful and convenient means of simultaneous discovery of intoxication source and the understanding of intoxication mechanisms.  相似文献   

9.
Radiation‐induced brain injury involves acute, early delayed and late delayed damage based on the time‐course and clinical manifestations. The acute symptoms are mostly transient and reversible, whereas the late delayed radiation‐induced changes are progressive and irreversible. Therefore, evaluation of the organ‐specific early response to ionizing radiation exposure is necessary for improving treatment strategies and minimizing possible damage at an early stage after radiation exposure. In the current study, the gas chromatography–mass spectrometry technique based on metabolomics coupled with metabolic correlation network was applied to investigate the early metabolic characterization of rat brain tissues following irradiation. Our findings showed that the metabolic response to irradiation was not just limited to the variations of individual metabolite levels, but also accompanied by alterations of network correlations among various metabolites. Metabolite clustering indicated that energy metabolism disorder and inflammation response were induced following radiation exposure. The correlation networks revealed that the strong positive correlations of differential metabolites were highly reduced and significant negative linkages were highlighted in irradiated groups even without statistical changes in metabolic levels. Our findings provided new insights into our understanding of the radiation‐induced acute brain injury mechanism and clues as to the therapy target for clinical applications.  相似文献   

10.
11.
Two water‐soluble 6‐(pyrazin‐2‐yl)‐1,3,5‐triazine‐2,4‐diamino (pzta)‐based Cu(II) complexes, namely [Cu(l ‐Val)(pzta)(H2O)]ClO4 ( 1 ) and [Cu(l ‐Thr)(pzta)(H2O)]ClO4 ( 2 ) (l ‐Val: l ‐valinate; l ‐Thr: l ‐threoninate), were synthesized and characterized using elemental analyses, molar conductance measurements, spectroscopic methods and single‐crystal X‐ray diffraction. The results indicated that the molecular structures of the complexes are five‐coordinated and show a distorted square‐pyramidal geometry, in which the central copper ions are coordinated to N,N atoms of pzta and N,O atoms of amino acids. The interactions of the complexes with DNA were investigated using electronic absorption, competitive fluorescence titration, circular dichroism and viscosity measurements. These studies confirmed that the complexes bind to DNA through a groove binding mode with certain affinities (Kb = 4.71 × 103 and 1.98 × 103 M?1 for 1 and 2 , respectively). The human serum albumin (HSA) binding properties of the complexes were also evaluated using fluorescence and synchronous fluorescence spectroscopies, indicating that the complexes could quench the intrinsic fluorescence of HSA in a static quenching process. The relevant thermodynamic parameters revealed the involvement of van der Waals forces and hydrogen bonds in the formation of complex–HSA systems. Finally, molecular docking technology was also used to further verify the interactions of the complexes with DNA/HSA.  相似文献   

12.
l ‐Asparaginase (l ‐Asnase) can suppress the growth of malignant cells by rapid depletion of two essential amino acids, l ‐glutamine (l ‐Gln) and l ‐asparagine (l ‐Asn). To study the cytotoxic effect and the secondary complications of l ‐Asnase in the treatment of acute lymphoblastic leukemia, the development of a novel enzyme reactor of l ‐Asnase for the hydrolysis of l ‐Gln, employing the enzyme‐gold nanoparticle conjugates in capillary, was reported in this work. First, a microchip CE (MCE)‐LIF was established for the separation of l ‐amino acids (l ‐Gln and l ‐glutamic acid) and studying the hydrolysis of l ‐Gln by using l ‐Asnase enzyme reactor. Then, using l ‐Gln as target analyte, the enzyme kinetics of l ‐Asnase in free solution, enzyme‐gold nanoparticle conjugates (E‐GNP), and the enzyme‐gold nanoparticle conjugates immobilized in capillary (E‐GNP‐C) were investigated in detail with the proposed MCE‐LIF method. Moreover, for optimizing the enzymatic reaction efficiency, three important parameters, including the length of capillary, the enzyme concentration reacted with gold nanoparticle and the amount of l ‐Asnase immobilized on the gold nanoparticle, have been studied. Owing to the high specific activity, the E‐GNP‐C enzyme reactor exhibited the best performance for the hydrolysis of l ‐Gln.  相似文献   

13.
To create a novel vector for specifically delivering anticancer therapy to solid tumors, we used diafiltration to synthesize pH‐sensitive polymeric micelles. The micelles, formed from a tetrablock copolymer [poly(ethylene glycol)‐b‐poly(L ‐histidine)‐b‐poly(L ‐lactic acid)‐b‐poly(ethylene glycol)] consisted of a hydrophobic poly(L ‐histidine) (polyHis) and poly(L ‐lactic acid) (PLA) core and a hydrophilic poly(ethylene glycol) (PEG) shell, in which we encapsulated the model anticancer drug doxorubicin (DOX). The robust micelles exhibited a critical micellar concentration (CMC) of 2.1–3.5 µg/ml and an average size of 65–80 nm pH 7.4. Importantly, they showed a pH‐dependent micellar destabilization, due to the concurrent ionization of the polyHis and the rigidity of the PLA in the micellar core. In particular, the molecular weight of PLA block affected the ionization of the micellar core. Depending on the molecular weight of the PLA block, the micelles triggering released DOX at pH 6.8 (i.e. cancer acidic pH) or pH 6.4 (i.e. endosomal pH), making this system a useful tool for specifically treating solid cancers or delivering cytoplasmic cargo in vivo. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
l ‐Isocorypalmine, an active alkaloid compound isolated from Rhizoma Corydalis yanhusuo, has been reported to possess biological activity for treating cocaine use disorder. A high‐performance liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry method was established for identification of the metabolites of l ‐isocorypalmine in urine, plasma and feces samples of rats after a single intragastric gavage of l ‐isocorypalmine at a dose of 15 mg/kg. As a result, a total of 21 metabolites (six phase ? metabolites and fifteen phase II metabolites) were detected and tentatively identified by mass spectrometry and fragment ions from tandem mass spectrometry spectra. All metabolites were present in the urine samples, nine metabolites were found in the plasma samples and three metabolites were found in the feces samples. Results indicated that metabolic pathways of l ‐isocorypalmine included oxidation, dehydrogenation, demethylation, sulfate conjugation, and glucuronide conjugation. In addition, glucuronidation was the major metabolic reaction. Results of this investigation could provide significant experimental basis for efficacy, safety and action mechanism of l ‐isocorypalmine, which will be advantageous to new drug development for treating cocaine addiction.  相似文献   

15.
Tianma‐Gouteng granule (TGG), a Chinese herbal formula preparation, is clinically used for the treatment of cardio‐cerebrovascular diseases such as hypertension, cerebral ischaemia, acute ischaemic stroke and Parkinson's disease. Although few reports have been published concerning the absorbed prototype components of TGG, the possible metabolic pathways of TGG in vivo remain largely unclear. In this study, a method using UPLC–Q/TOF MS was established for the detection and identification of the absorbed prototype components and related metabolites in rat plasma and bile after oral administration of TGG at high and normal clinical dosages. A total of 68 components were identified or tentatively identified in plasma and bile samples, including absorbed prototypes and their metabolites. The major absorbed components were gastrodin, isorhynchophylline, rhynchophylline, isocorynoxeine, corynoxeine, geissoschizine methyl ether baicalin, baicalein, wogonoside, wogonin, geniposidic acid, leonurine, 2,3,5,4′‐tetrahydroxystilbene‐2‐Oβ‐d ‐glucoside and emodin. The main metabolic pathways of these components involved phase I (isomerization, hydrolysis and reduction) and phase II (glucuronidation and sulfation) reaction, and the phase II biotransformation pathway was predominant. The present study provides rich information on the in vivo absorption and metabolism of TGG, and the results will be helpful for further studies on the pharmacokinetics and pharmacodynamics of TGG.  相似文献   

16.
Prim‐O‐glucosylcimifugin (PGCN) and cimifugin (CN) are major constituents of Radix Saposhnikoviae that have antipyretic, analgesic and anti‐inflammatory pharmacological activities. However, there were few reports with respect to the metabolism of PGCN and CN in vitro. In this paper, we describe a strategy using ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) for fast analysis of the metabolic profile of PGCN and CN in human liver microsomes. In total, five phase I metabolites of PGCN, seven phase I metabolites and two phase II metabolites of CN were identified in the incubation of human liver microsomes. The results revealed that the main phase I metabolic pathways of PGCN were hydroxylation and hydrolysis reactions. The phase I metabolic pathways of CN were found to be hydroxylation, demethylation and dehydrogenation. Meanwhile, the results indicated that O‐glucuronidation was the major metabolic pathway of CN in phase II metabolism. The specific UDP‐glucuronosyltransferase (UGT) enzymes responsible for CN glucuronidation metabolites were identified using recombinant UGT enzymes. The results indicated that UGT1A1, UGT1A9, UGT2B4 and UGT2B7 might play major roles in the glucuronidation of CN. Overall, this study may be useful for the investigation of metabolic mechanism of PGCN and CN, and it can provide reference and evidence for further pharmacodynamic experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
《中国化学》2017,35(11):1687-1692
An acceptor‐donor‐acceptor (A‐D‐A) three‐dimensional (3D ) small molecule acceptor (SFTTIC ), using spirobifluorene as the core unit linking with four thieno[3,2‐b ]thiophenes (TT ) and end‐capped with 2‐(3‐oxo ‐2,3‐dihydro‐1H ‐inden‐1‐ylidene)malononitrile (INCN ) was developed for solution processed organic solar cells. SFTTIC has a high absorption coefficient up to 3.12 × 105 mol−1•cm−1, good thermal stability and appropriate energy levels. The optimized power conversion efficiency (PCE ) of 5.66% and 4.65% was achieved for the devices with PBDB ‐T:SFTTIC and PTB7 ‐Th:SFTTIC , respectively.  相似文献   

18.
When quantifying information in metabolomics, the results are often expressed as data carrying only relative information. Vectors of these data have positive components, and the only relevant information is contained in the ratios between their parts; such observations are called compositional data. The aim of the paper is to demonstrate how partial least squares discriminant analysis (PLS‐DA)—the most widely used method in chemometrics for multivariate classification—can be applied to compositional data. Theoretical arguments are provided, and data sets from metabolomics are investigated. The data are related to the diagnosis of inherited metabolic disorders (IMDs). The first example analyzes the significance of the corresponding regression parameters (metabolites) using a small data set resulting from targeted metabolomics, where just a subset of potential markers is selected. The second example—the approach of untargeted metabolomics—was used for the analysis detecting almost 500 metabolites. The significance of the metabolites is investigated by applying PLS‐DA, accommodated according to a compositional approach. The significance of important metabolites (markers of diseases) is more clearly visible with the compositional method in both examples. Also, cross‐validation methods lead to better results in case of using the compositional approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This study aimed to investigate the efficacy of mangiferin, including its known antioxidant and anti‐inflammatory effects on sepsis‐induced lung injury induced by a classical cecal ligation and puncture (CLP) models in mouse using a metabolomics approach. A total of 24 mice were randomly divided into four groups: the sham group was given saline before sham operation. The CLP group received the CLP operation only. HMF and LMF groups were given mangiferin treatment of high dose and low dose of mangiferin, respectively, before the CLP operation. One week after treatment, the mice were sacrificed and their lungs were collected for metabolomics analysis. We developed ultra‐performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry to perform lung metabolic profiling analysis. With the methods of principal component analysis and partial least squares discriminant analysis, 58 potential metabolites associated with amino acid metabolism, purine metabolism, lipid metabolism and energy regulation were observed to be increased or reduced in HMF and LMF groups compared with the CLP group. Conclusively, our results suggest that mangiferin plays a protective role in the moderation of sepsis‐induced lung injury through reducing oxidative stress, regulating lipid metabolism and energy biosynthesis.  相似文献   

20.
Three novel copper(II) complexes, [Cu(Gly‐l ‐Val)(HPBM)(H2O)]·ClO4·H2O ( 1 ), [Cu(Gly‐l ‐Val)(TBZ)(H2O)]·ClO4 ( 2 ) and [Cu(Gly‐l ‐Val)(PBO)(H2O)]·ClO4 ( 3 ) (Gly‐l ‐Val = glycyl‐l ‐valine anion, HPBM = 5‐methyl‐2‐(2′‐pyridyl)benzimidazole, TBZ = 2‐(4′‐thiazolyl)benzimidazole, PBO = 2‐(2′‐pyridyl)benzoxazole), have been prepared and characterized with elemental analyses, conductivity measurements as well as various spectroscopic techniques. The interactions of these copper complexes with calf thymus DNA were explored using UV–visible, fluorescence, circular dichroism, thermal denaturation, viscosity and docking analyses methods. The experimental results showed that all three complexes could bind to DNA via an intercalative mode. Moreover, the cytotoxic effects were evaluated using the MTT method, and the antimicrobial activity of these complexes was tested against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The results showed that the activities are consistent with their DNA binding abilities, following the order of 1 > 2 > 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号