首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Short tandem repeat (STR) automatic typing technology is extensively used in forensic laboratories with commercial kits, in rare cases genotyping misinterpretations or mislabeling may occur due to unexpected rare alleles. This study refers to the investigation of several rare alleles observed from routine cases. Besides cross-kit verification with Goldeneye 25A (Beijing PeopleSpot Inc, China) and Huaxia platinum (Thermo Fisher Scientific, USA) kits, the next-generation sequencing technology by MiSeq FGx System (Illumina, USA) was applied to further validation. To solve the inconsistent outcomes reached by the above mentioned approaches at D2S441 locus, single gene amplification, gene cloning, and genetic sequencing was also performed. As a result, five rare alleles were detected. Two novel alleles of allele 3 at the D13S317 locus and allele 5 at the D2S441 locus were found; three previously reported alleles of allele 9 at D1S1656 locus, allele 19 at Penta D locus, and allele 28 at D12S391 locus in STRBase were initially supplemented with sequence information. We, therefore, propose that such uncommon observations with rare events should be carefully investigated and interpreted.  相似文献   

2.
《Electrophoresis》2017,38(6):846-854
This study assesses the performance of Illumina's MiSeq FGx System for forensic genomics by systematically analyzing single source samples, evaluating concordance, sensitivity and repeatability, as well as describing the quality of the reported outcomes. DNA from 16 individuals (9 males/7 females) in nine separate runs showed consistent STR profiles at DNA input ≥400 pg, and two full profiles were obtained with 50 pg DNA input. However, this study revealed that the outcome of a single sample does not merely depend on its DNA input but is also influenced by the total amount of DNA loaded onto the flow cell from all samples. Stutter and sequence or amplification errors can make the identification of true alleles difficult, particularly for heterozygous loci that show allele imbalance. Sequencing of 16 individuals’ STRs revealed genetic variations at 14 loci at frequencies suggesting improvement of mixture deconvolution. The STR loci D1S1656 and DXS10103 were most susceptible to drop outs, and D22S1045 and DYS385a‐b showed heterozygote imbalance.  Most stutters were typed at TH01 and DYS385a‐b, while amplification or sequencing errors were observed mostly at D7S820 and D19S433. Overall, Illumina's MiSeq FGx System produced reliable and repeatable results.  aSTRs showed fewer drop outs than the Y‐ and X‐STRs.  相似文献   

3.
Massively parallel sequencing of forensic STRs simultaneously provides length-based genotypes and core repeat sequences as well as flanking sequence variations. Here, we report primer sequences and concentrations of a next-generation sequencing (NGS)-based in-house panel covering 28 autosomal STR loci (CSF1PO, D1GATA113, D1S1627, D1S1656, D1S1677, D2S441, D2S1776, D3S3053, D5S818, D6S474, D6S1017, D6S1043, D8S1179, D9S2157, D10S1435, D11S4463, D13S317, D14S1434, D16S539, D18S51, D18S853, D20S482, D20S1082, D22S1045, FGA, TH01, TPOX, and vWA) and the sex determinant locus Amelogenin. Preliminary evaluation experiments showed that the panel yielded intralocus- and interlocus-balanced sequencing data with a sensitivity as low as 62.5 pg input DNA. A total of 203 individuals from Yunnan Bai population were sequenced with this panel. Comparative forensic genetic analyses showed that sequence-based matching probability of this 29-plex panel reached 2.37 × 10−29, which was 23 times lower than the length-based data. Compound stutter sequences of eight STRs were compared with parental alleles. For seven loci, repeat motif insertions or deletions occurred in the longest uninterrupted repeat sequences (LUS). However, LUS and non-LUS stutters co-existed in the locus D6S474 with different sequencing depth ratios. These results supplemented our current knowledge of forensic STR stutters, and provided a sound basis for DNA mixture deconvolution.  相似文献   

4.
Current technologies have increased the sensitivity for analyzing forensic DNA samples, especially those considered “touch samples.” Because of this, there has been an increase in the number of forensic mixtures–two or more contributors within a single sample–submitted to the crime laboratories. Therefore, the need to resolve these mixtures has increased as well. Several technologies are currently utilized, but many of them are time consuming and do not resolve the entire profile. Therefore, CE‐Single‐Strand Conformational Polymorphisms coupled with the Pluronic F‐108 polymer was assessed for its ability to resolve human forensic mixtures. This technique has been able to detect sequence variation, such as single nucleotide polymorphism in short tandem repeat loci, such as D7S820 and vWA. Samples were first analyzed with the Performance Optimized Polymer‐7, and mixtures created from samples that shared alleles. These samples were sequenced to detect single base‐pair mutations and evaluated with the F‐108 and CE‐Single Strand Conformational Polymorphism analysis. Results from this study indicated the method would serve as a valuable screening tool to detect base sequence variation between individuals when they share alleles in a mixture and before using Massive Parallel Sequencing technology to distinguish which bases differ.  相似文献   

5.
Hau P  Watson N 《Electrophoresis》2000,21(8):1478-1483
Minisatellite variant repeat mapping by polymerase chain reaction (MVR-PCR) reveals an enormous degree of variation in the human minisatellite regions. The original approach involved the use of 32P-labelled probes to detect the MVR-PCR products generated. To date, the loci mapped include D1S8, D7S21 and D16S309. However, the most polymorphic locus, D1S7 (MS1), which has been used in forensic analysis, has presented technical difficulties, initially due to its short 9 bp repeats that are much shorter than any conventional primer sequences. This was overcome by using the method of "wrapping around" primers employing inosine at the redundancy position. The difficulty of cloning highly repetitive DNA was overcome by utilising specialised competent SURE cells. We report the cloning and sequencing of selected short MS1 alleles to determine the variety of repeat types. This survey revealed nine types, four of which represented greater than 80% of the sequenced repeats. The reported MVR-PCR system maps the MS1 locus for these four common repeat types by fluorescence detection.  相似文献   

6.
The aim of this study was to investigate the genetic polymorphism of 20 short tandem repeat (STR) loci including D1S1656, D2S1338, D3S1358, D5S818, D6S1043, D7S820, D8S1179, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, CSF1PO, FGA, Penta D, Penta E, TH01, TPOX, and vWA in Han population of Henan, China and to assess its value in forensic science. Genomic DNA was extracted from 274 blood samples of unrelated healthy individuals in the Henan Han population. Alleles were amplified with PowerPlex® 21 system kit and PCR products were detected with ABI3130 genetic analyzer (Applied Biosystems) and the data were analyzed with modified PowerStats v1.2. A total of 229 alleles were observed in this Han population and the allelic frequencies ranged from 0.0020 to 0.5090 in the present study. Observed genotype distributions for each locus do not show deviations from Hardy–Weinberg equilibrium expectations (p < 0.05). The combined power of discrimination, combined power of exclusion, and combined matching probability of this 20 STR loci were 0.999999999, 0.999999994603, and 4.0433 × 10?24, respectively. The 20 STR loci are highly polymorphic in the Han population of Henan, China and they may be of great value in forensic science and human population genetics.  相似文献   

7.
The Microreader 28A ID System is a new 28-plex genotyping system with 6-dye multiplex amplification, which allows the simultaneous amplification of all 20 Combined DNA Index System (CODIS) core loci (CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, TH01, TPOX, vWA, D1S1656, D2S441, D2S1338, D10S1248, D12S391, D19S433, D22S1045), plus five extended STRs loci (D6S1043, Penta D, Penta E, DYS391, SE33), 2 Y-Indels (Rs2032678, Rs771783753), and the amelogenin loci. This system can be used for forensic analyses, such as personal identification, kinship testing, scientific research, database applications, and other aspects of human genetic identification. The validation of the Microreader 28A ID System followed the “Validation Guidelines for DNA Analysis Methods (2016)” described by the Scientific Working Group on DNA Analysis Methods and the regulations published by the China Ministry of Public Security. Our tests included PCR-based studies, sensitivity study, precision and accuracy evaluation, stutter percentage and heterozygous peak height ratio, inhibitor tests, species specificity, and population studies. The validation results suggest that the Microreader 28A ID system is a robust and reliable amplification kit for personal identification, kinship testing, and forensic database applications.  相似文献   

8.
We used an infrared (IR) automated fluorescence monolaser sequencer for the analysis of 13 autosomal short tandem repeat (STR) systems (TPOX, D3S1358, FGA, CSF1PO, D5S818, D7S820, D8S1179, TH01, vWA, D13S317, D16S359, D18S51, D21S11) and the X-Y homologous gene amelogenin system. These two systems represent the core of the combined DNA index systems (CODIS). Four independent multiplex reactions, based on the polymerase chain reaction (PCR) technique and on the direct labeling of the forward primer of every primer pair, with a new molecule (IRDye800), were set up, permitting the exact characterization of the alleles by comparison with ladders of specific sequenced alleles. This is the first report of the whole analysis of the STRs of the CODIS core using an IR automated DNA sequencer. The protocol was used to solve paternity/maternity tests and for population studies. The electrophoretic system also proved useful for the correct typing of those loci differing in size by only 2 bp. A sensibility study demonstrated that the test can detect an average of 10 pg of undegraded human DNA. We also performed a preliminary study analyzing some forensic samples and mixed stains, which suggested the usefulness of using this analytical system for human identification as well as for forensic purposes.  相似文献   

9.
The aim of this study was to investigate a 13 non‐CODIS STR loci database using three national populations from China. A new multiplex PCR system that simultaneously amplified 13 loci in the same PCR reaction was developed. This multiplex system included the 13 STR markers (D3S2402, D3S2452, D3S1766, D3S4554, D3S2388, D3S3051, D3S3053, D4S2364, D4S2404, AC001348A, AC001348B, D17S975, and D17S1294), which were successfully analyzed by using 441 DNA samples from three national populations in China (154 Mongol, 177 Kazakh, and 110 Uigur). Allele frequencies and mutation rates of the 13 non‐CODIS STR loci were investigated. A total of 4–10 alleles at each locus were observed and altogether 84, 88, and 87 alleles for the all selected loci were found in the Mongol, Kazakh, and Uigur, respectively. Eight mutations were detected from the 13 selected loci in 9880 meioses in kinship cases. These results indicate that this multiplex system may provide significant polymorphic information for kinship testing and relationship investigations.  相似文献   

10.
Human identification and paternity testing are usually based on the study of STRs depending on their particular characteristics in the forensic investigation. In this paper, we developed a sensitive genotyping system, SiFaSTR? 23‐plex, which is able to characterize 18 expanded Combined DNA Index System STRs (D3S1358, D5S818, D2S1338, TPOX, CSF1PO, TH01, vWA, D7S820, D21S11, D10S1248, D8S1179, D1S1656, D18S51, D12S391, D19S433, D16S539, D13S317, and FGA), three highly polymorphic STRs among Chinese people (Penta D, Penta E, and D6S1043), one Y‐chromosome Indel and amelogenin using a multiplex PCR; the PCR amplified products were analyzed using the Applied Biosystems 3500 Genetic Analyzer. Full genotyping profiles were obtained using only 31.25 pg of control DNA; various case‐type specimens, as well as ten‐year‐old samples were also successfully genotyped. Additionally, in the validation studies, this multiplex was demonstrated to be human‐specific and compatible with the interference of multiple PCR inhibitors. The system also enabled the detection of mixtures, and complete profiles could be obtained at the mixed ratios of 1:1, 1:3, and 3:1. The development and validation study here illustrated that the SiFaSTR? 23‐plex system is accurate, powerful, and more sensitive than many other systems. What's more, the population data in our study not only illustrated that this 23‐plex typing system was straightforward and efficient but also expanded the Chinese STR database, which could facilitate the appropriate application of the 23 genetic markers in forensic genetics, especially in the Chinese population.  相似文献   

11.
Tsai LC  Wu KL  Hsieh HM  Chien MH  Linacre A  Lee JC 《Electrophoresis》2001,22(6):1090-1094
A novel nomenclature for the hypervariable microsatellite DNA, APOAI1 locus, is proposed. The complex nature of the repeat unit in this locus results in alleles separated by a single base. Polymerase chain reaction (PCR) products amplified from this locus were separated by single-strand conformation polymorphism (SSCP) electrophoresis. All the single-stranded DNA bands on the SSCP gel were removed from the gel and a second amplification performed. Homozygous DNA fragments amplified from single-stranded DNA were sequenced. From the 100 individuals studied, 30 alleles and 73 genotypes were found. A system of nomenclature for the APOAI1 locus is provided that is logical and in line with previous models. Using the primers described, the locus can be amplified and alleles designated on the basis of size. This system of nomenclature will assist in the exchange of data between laboratories for this locus.  相似文献   

12.
Linkage disequilibria (LD) between alleles and haplotypes of human leucocyte antigen, locus A (HLA) and STR loci located in the human major histocompatibility complex were analyzed in order to investigate whether or not HLA alleles and haplotypes are predictable by alleles or haplotypes of HLA STRs. Standardized genotyping of eight STR loci (D6S2972, D6S2906, D6S2691, D6S2678, D6S2792, D6S2789, D6S273, and DQIV) was performed by CE on 600 individuals from 150 Austrian Caucasoid families with known HLA‐A,‐B,‐C and –DRB1 typing. From those, 576 full haplotypes of four HLA and eight STR loci were obtained. Haplotypes of two flanking STRs predicted HLA alleles and two‐locus HLA haplotypes better than single STR alleles, except HLA‐DRB1 alleles (92% were in LD with DQIV alleles only). A percentage of 65–86% of three and four‐locus HLA haplotypes were in LD with haplotypes of three, four, and eight of their flanking STR loci including numerous clear‐cut predictions (20–61%). All eight and a set of the four most informative STR loci D6S2972, D6S2678, D6S2792, and DQIV could identify all HLA identical and nonidentical siblings in 138 pairs of siblings. The results of this proof of concept study in Austrian Caucasoids show, that HLA STRs can aid the definition of HLA‐A,‐B,‐C,‐DRB1 haplotypes and the selection of sibling donors for stem cell transplantation.  相似文献   

13.
Wang W  Bittles AH 《Electrophoresis》2001,22(6):1095-1097
Short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) are widely used as markers in human genome studies. We have characterized a highly polymorphic STR locus (D20S85) with (AAAG)n repeats, by a combination of direct DNA sequencing and single-strand conformation polymorphism (SSCP) analysis. Eight STR alleles were first identified on denaturing gels, and SSCP gels were then used to demonstrate the existence of previously indistinguishable multiple alleles at the locus on the basis of variable allelic flanking sequences. This was confirmed by direct sequencing of the alleles. Four transitions, two G to A and two A to G in the 5'-flanking region of the locus at positions 14, 22, 24, and 26 effectively subdivided the STR alleles into two groups, with frequencies of 0.431 and 0.569, respectively. The mutational processes that generated the polymorphisms involved both simple changes in the number of AAAG repeats and single nucleotide mutations in the region flanking the repeat. The findings have potential application in the avoidance of false linkage and association. A composite locus of this nature, with separate STR and SNP evolutionary histories and resulting from different mutational processes, also could have wide application in studies of selection, drift, migration and inbreeding.  相似文献   

14.
MiniSTR loci have been demonstrated to be an effective approach in recovering genetic information from degraded specimens, because of the reduced PCR amplicon sizes which improved the PCR efficiency. Eight non‐combined DNA index system miniSTR loci suitable for the Chinese Han Population were analyzed in 300 unrelated Chinese Han individuals using two novel five fluorescence‐labeled miniSTR multiplex systems(multiplex I: D10S1248, D2S441, D1S1677 and D9S2157; multiplex II: D9S1122, D10S1435, D12ATA63, D2S1776 and Amelogenin). The allele frequency distribution and forensic parameters in the Chinese Han Population were reported in this article. The Exact Test demonstrated that all loci surveyed here were found to be no deviation from Hardy–Weinberg equilibrium. The accumulated power of discrimination and power of exclusion for the eight loci were 0.999999992 and 0.98, respectively. The highly degraded DNA from artificially degraded samples and the degraded forensic case work samples was assessed with the two miniSTR multiplex systems, and the results showed that the systems were quite effective.  相似文献   

15.
Germline mutations of human short tandem repeat (STR) loci are expansions or contractions of repeat arrays which are not well understood in terms of the mechanism(s) underlying such mutations. Although polymerase slippage is generally accepted as a mechanism capable to explain most features of such mutations, it is still possible that unequal crossing over plays some role in those events, as most studies in humans could not exclude unequal crossing over (UCO). Crossing over can be studied by analyzing haplotypes using flanking markers. To check for UCO in mutations, we have analyzed 150 paternity cases for which more than the usual trio (mother, child, and father) were available for testing by analyzing 16 STR loci. In a total of 4900 parent-child allele transfers four mutations were observed at different loci (D8S1179, D18S51, D21S11, and SE33/ACTBP2). To identify the mutated allele and to check for UCO, we typed at least four informative loci flanking the mutated locus and used the pedigree data to establish haplotypes. By doing so we were able to exclude UCO in each case. Moreover, we were able to identify the mutations as one-repeat contractions/expansions. Our data thus support slippage as the mechanism of germline mutations in STRs.  相似文献   

16.
We report the evaluation of short tandem repeat (STR) locus D2S1242 (GDB ID G00-309-429) for forensic purposes, investigated by polymerase chain reaction (PCR) amplification and both native and denaturating polyacrylamide gel electrophoresis in 147 unrelated Austrians. No deviations from Hardy-Weinberg expectations were observed. The mean exclusion chance (MEC) was 0.669, the discriminating power (DP) was 0.947, and the observed heterozygosity rate was 0.856. An allelic ladder consisting of eight sequenced alleles (141-167 and 175 bp) was constructed. Sequence analysis revealed that the locus comprised two repeat motifs varying in number between alleles GAAA and GAAG. According to the number of tetranucleotide repeats the smallest allele was designated as 10 and the largest allele as 18.  相似文献   

17.
The goal of the study was to develop a STR multiplex ("Paterniplex") that is--as supplement to commercially available multiplex kits like the Identifiler kit (Applied Biosystems, Foster City, CA)--suitable for solving complex paternity cases such as deficiency cases or cases with mutations. The Paterniplex comprises the nine highly polymorphic STRs D8S1132, D7S1517, D10S2325, D12S391, Se33, D17S976, Penta E, Penta D and FGA in addition to Amelogenin as sex determination marker. The loci were selected because of their high degree of polymorphism (higher than that of the widely used TH01 marker). Only one locus, FGA, is shared with the Identifiler kit to avoid sample mix up. The study further gives details on the population genetics of the loci in a German Caucasian population (allelic distribution, Hardy-Weinberg Equilibrium and forensic efficiency markers such as the Discriminating Power) and three examples for cases that could not be solved using commercially available kits alone, but using the Paterniplex in addition to a commercial kit.  相似文献   

18.
This paper describes the development and validation of a novel 31-locus, six-dye STR multiplex system, which is designed to meet the needs of the rapidly growing Chinese forensic database. This new assay combines 20 extended-CODIS core loci (D3S1358, D5S818, TPOX, CSF1PO, TH01, vWA, D7S820, D21S11, D8S1179, D18S51, D16S539, D13S317, FGA, D1S1656, D2S441, D2S1338, D10S1248, D12S391, D19S433, and D22S1045), nine highly polymorphic loci in Chinese Han population (D3S3045, D6S1043, D6S477, D8S1132, D10S1435, D15S659, D19S253, Penta D, and Penta E), and two gender determining markers, amelogenin and Y-Indel, which could amplify DNA from extracts, as well as direct amplification from substrates. To demonstrate the suitability for forensic applications, this system was validated by precision and accuracy evaluation, concordance tests, case sample tests, sensitivity, species specificity, stability, stutter calculation, and DNA mixtures, according to the guidelines described by the Scientific Working Group on DNA Analysis Methods (SWGDAM) and regulations published by the China Ministry of Public Security. The validation results indicate the robustness and reliability of this new system, and it could be a potentially helpful tool for human identification and paternity testing in the Chinese population, as well as facilitating global forensic DNA data sharing.  相似文献   

19.
The paper has established an approach of typing short tandem repeats (STRs) based on the near-infrared spectroscopy (NIRS)-chemical pattern recognition. Taking the three genotypes 9-9, 9-11 and 11-11 of D16S539 locus as example, which have a middle degree of difference, DNA fragments containing the polymorphism sites were amplified by a pair of primers to obtain three genotypes samples; these samples were tested by the NIRS directly; using their spectra as recognition variables, the chemical pattern recognition models of the three genotypes were respectively established by using the principal discriminant variate (PDV) and support vector machine (SVM). The two models have a good fitting ability and strong prediction (i.e. the predicting accuracy was 100%). They are robust for these strong collinear spectra and the small number of the calibration samples. Without any preprocessing for the analyzed samples after PCR, the three genotypes of D16S539 locus could be indirectly determined by using the NIRS-s of the samples with the help of the models. This method is simple, rapid and low cost.  相似文献   

20.
The ABO locus on chromosome 9 contains many more alleles than are currently used routinely in forensic science. The use of single-strand conformation polymorphism (SSCP) can separate sequence polymorphisms that differ by only one base. The SSCP process used allows for both single- and double-stranded polymerase chain reaction (PCR) products to be visualized. The six ABO genotypes can be differentiated by the allele-specific B and O SSCP patterns. The double-stranded DNA produced 'hybrid' bands due to heterozygous samples and allowed sequence diversity to be detected between alleles of heterozygotes. These 'hybrid' bands are valid markers to confirm genotypes of specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号