首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Condensation of 1,8,13‐tris(mercaptomethyl)triptycene and tris(bromomethyl)methane yields an in,in‐cyclophane with two inwardly directed methine groups. Based on X‐ray analysis and DFT and MP2 calculations, the hydrogen–hydrogen non‐bonded contact distance is estimated to be 1.50–1.53 Å. Furthermore, the two in‐hydrogen atoms show obvious spin–spin coupling with J=2.0 Hz.  相似文献   

2.
A new variant of SQ–SQ pulse sequence (SQSQh) for relative sign determination and detection of small silicon–carbon couplings over more than one bond is presented. In the SQSQh sequence, proton detection replaces carbon detection used in the original SQ–SQ pulse sequence (SQSQc). The theoretical gain in sensitivity was experimentally tested on two samples (trimethylsiloxyethane, 1, and 1,2,4‐tris(trimethylsiloxy)benzene, 2), the experimentally found gain provided by the SQSQh over the SQSQc method varied between 6 and 8. The method can be applied to linear spin systems, i.e. to systems where the silicon is coupled to the carbon in question and to any hydrogen not necessarily bonded to the carbon. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The influence of the hydrogen bond formation on the NMR spin–spin coupling constants (SSCC), including the Fermi contact (FC), the diamagnetic spin‐orbit, the paramagnetic spin‐orbit, and the spin dipole term, has been investigated systematically for the homogeneous glycine cluster, in gas phase, containing up to three monomers. The one‐bond and two‐bond SSCCs for several intramolecular (through covalent bond) and intermolecular (across the hydrogen‐bond) atomic pairs are calculated employing the density functional theory with B3LYP and KT3 functionals and different types of extended basis sets. The ab initio SOPPA(CCSD) is used as benchmark for the SSCCs of the glycine monomer. The hydrogen bonding is found to cause significant variations in the one‐bond SSCCs, mostly due to contribution from electronic interactions. However, the nature of variation depends on the type of oxygen atom (proton‐acceptor or proton‐donor) present in the interaction. Two‐bond intermolecular coupling constants vary more than the corresponding one‐bond constants when the size of the cluster increases. Among the four Ramsey terms that constitute the total SSCC, the FC term is the most dominant contributor followed by the paramagnetic spin‐orbit term in all one‐bond interaction.  相似文献   

4.
Three new phenyl‐substituted tris(8‐hydroxyquinoline)aluminum (AlQ3) derivatives have been synthesized: tris(5‐phenyl‐8‐quinolinolate‐N1,O8)aluminum, tris(5,7‐diphenyl‐8‐quinolinolate‐N1,O8)aluminum, and tris[5,7‐bis(p‐fluorophenyl)‐8‐quinolinolate‐N1,O8]aluminum. These AlQ3 derivatives are easily soluble in common organic solvents and form solid‐phase solutions in a poly(aryl ether ketone) host polymer (A435). These interesting properties allow the use of soluble AlQ3 derivatives in double spin‐coated organic light‐emitting devices of the type ITO/NPB‐QP/A435 + 50 wt % soluble AlQ3 derivative/Mg, where NPB‐QP is a hole‐transporting polymer insoluble in toluene, the solvent for A435. Typical double spin‐coated organic layer devices are characterized by an emission at 530–539 nm, a threshold voltage of 6–9 V, and a maximum luminance of 1800–4000 cd/m2 at 21–25 V. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3006–3016, 2003  相似文献   

5.
In the adduct 1,2‐bis(4‐pyridyl)­ethane–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2), C12H12N2·2C20H18O3, the bipyridyl component lies across an inversion centre in P. The tris‐phenol mol­ecules [systematic name: 4,4′,4′′‐(ethane‐1,1,1‐triyl)­triphenol] are linked by O—H?O hydrogen bonds to form sheets built from R(38) rings, and symmetry‐related pairs of sheets are linked by the bipyridyl mol­ecules via O—H?N hydrogen bonds to form open bilayers. Each bilayer is interwoven with two adjacent bilayers, forming a continuous three‐dimensional structure. In the adduct 1,2‐bis(4‐pyridyl)­ethene–1,1,1‐tris(4‐hydroxy­phenyl)­ethane–methanol (1/1/1), C12H10N2·C20H18O3·CH4O, the mol­ecules are linked by O—H?O and O—H?N hydrogen bonds into three interwoven three‐dimensional frameworks, generated by single spiral chains along [010] and [001] and a triple‐helical spiral along [100].  相似文献   

6.
We study the excited states of two iridium(III) complexes with potential applications in organic light‐emitting diodes: fac‐tris(2‐phenylpyridyl)iridium(III) [Ir(ppy)3] and fac‐tris(1‐methyl‐5‐phenyl‐3‐n‐propyl‐[1,2,4]triazolyl)iridium(III) [Ir(ptz)3]. Herein we report calculations of the excited states of these complexes from time‐dependent density functional theory (TDDFT) with the zeroth‐order regular approximation (ZORA). We show that results from the one‐component formulation of ZORA, with spin–orbit coupling included perturbatively, accurately reproduce both the results of the two‐component calculations and previously published experimental absorption spectra of the complexes. We are able to trace the effects of both scalar relativistic correction and spin–orbit coupling on the low‐energy excitations and radiative lifetimes of these complexes. In particular, we show that there is an indirect relativistic stabilisation of the metal‐to‐ligand charge transfer (MLCT) states. This is important because it means that indirect relativistic effects increase the degree to which SOC can hybridise singlet and triplet states and hence plays an important role in determining the optical properties of these complexes. We find that these two compounds are remarkably similar in these respects, despite Ir(ppy)3 and Ir(ptz)3 emitting green and blue light respectively. However, we predict that these two complexes will show marked differences in their magnetic circular dichroism (MCD) spectra.  相似文献   

7.
8.
We present a composite procedure for the quantum‐chemical computation of spin–spin‐coupled 1H NMR spectra for general, flexible molecules in solution that is based on four main steps, namely conformer/rotamer ensemble (CRE) generation by the fast tight‐binding method GFN‐xTB and a newly developed search algorithm, computation of the relative free energies and NMR parameters, and solving the spin Hamiltonian. In this way the NMR‐specific nuclear permutation problem is solved, and the correct spin symmetries are obtained. Energies, shielding constants, and spin–spin couplings are computed at state‐of‐the‐art DFT levels with continuum solvation. A few (in)organic and transition‐metal complexes are presented, and very good, unprecedented agreement between the theoretical and experimental spectra was achieved. The approach is routinely applicable to systems with up to 100–150 atoms and may open new avenues for the detailed (conformational) structure elucidation of, for example, natural products or drug molecules.  相似文献   

9.
Iron(II) triazolate coordination polymers with lipophilic sulfonate counterions with alkyl chains of different lengths have been synthesized. In hydrocarbon solvents, these polymers formed a physical gel and showed a thermoreversible spin transition upon the sol–gel phase transition. The formation of a hydrogen‐bonding network between the triazolate moieties and sulfonate ions, bridged by water molecules, was found to play an important role in the spin‐crossover event. The spin‐transition temperature was tuned over a wide range by adding a small amount of 1‐octanol, a scavenger for hydrogen‐bonding interactions. This additive was essential for the iron(II) species to adopt a low‐spin state. Compared with nongelling references in aromatic solvents, the spin‐crossover physical gels are characterized by their quick thermal response, which is due to a rapid restoration of the hydrogen‐bonding network, possibly because of a dynamic structural ordering through an enhanced lipophilic interaction of the self‐assembling components in hydrocarbon solvents.  相似文献   

10.
A new ATRP initiator containing two furyl rings, namely, bis(furan‐2‐ylmethyl) 2‐bromopentanedioate was synthesized starting from commercially available l ‐glutamic acid as a precursor. Well‐defined bisfuryl‐terminated poly(lauryl methacrylate) macromonomers with molecular weight and dispersity in the range 5000–12,000 g mol?1 and 1.30–1.37, respectively, were synthesized employing the initiator by atom transfer radical polymerization (ATRP). Independently, 1,1′,1″‐(nitrilotris(ethane‐2,1‐diyl))tris(1H‐pyrrole‐2,5‐dione) was synthesized as a tris‐maleimide counterpart for furan‐maleimide click reaction. Thermo‐reversible network polymer bearing flexible poly(lauryl methacrylate; (PLMA) chains was obtained by furan‐maleimide Diels–Alder click reaction of bisfuryl‐terminated PLMA with 1,1′,1″‐(nitrilotris(ethane‐2,1‐diyl))tris(1H‐pyrrole‐2,5‐dione). The prepared network polymer showed retro‐Diels–Alder reaction in the temperature range 110–170 °C as determined from DSC analysis. The presence of low Tg (–40 °C) PLMA chains induced chain mobility to the network structure which led to the complete scratch healing of the coating at 60 °C in five days due to furan‐maleimide adduct formation. The storage modulus of the network polymer was found to be 3.7 × 104 Pa at the constant angular frequency of 5 rad/sec and strain of 0.5%. The regular reversal of storage (G ′) and loss modulus (G ″) was observed with repeated heating (40 to 110 °C) and cooling cycles (110 to 40 °C) at constant angular frequency and strain. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2700–2712  相似文献   

11.
Understanding the mechanism of efficient photoinduced electron‐transfer processes is essential for developing molecular systems for artificial photosynthesis. Towards this goal, we describe the synthesis of a donor–acceptor dyad comprising a zinc porphyrin donor and a tetracationic cyclobis(paraquat‐p‐phenylene) (CBPQT4+) acceptor. The X‐ray crystal structure of the dyad reveals the formation of a dimeric motif through the intermolecular coordination between the triazole nitrogen and the central Zn metal of two adjacent units of the dyad. Photoinduced electron transfer within the dyad in MeCN was investigated by femtosecond and nanosecond transient absorption spectroscopy, as well as by transient EPR spectroscopy. Photoexcitation of the dyad produced a weakly coupled ZnP+.–CBPQT3+. spin‐correlated radical‐ion pair having a τ=146 ns lifetime and a spin–spin exchange interaction of only 0.23 mT. The long radical‐ion‐pair lifetime results from weak donor–acceptor electronic coupling as a consequence of having nine bonds between the donor and the acceptor, and the reduction in reorganization energy for electron transfer caused by charge dispersal over both paraquat units within CBPQT3+..  相似文献   

12.
The resonance‐assisted hydrogen bond (HB) phenomenon has been studied theoretically by a localized molecular orbital (LMO) decomposition of the spin–spin coupling constants between atoms either involved or close to the O–H · · · O system of some β‐diketones and their saturated counterparts. The analysis, carried out at the level of the second‐order polarization propagator approximation, shows that the contributions in terms of LMO to the paramagnetic spin orbital and the spin dipolar Ramsey terms proof the importance of the delocalized π‐electron structure supporting the idea of the existence of the resonance‐assisted HB phenomenon phenomenon. The LMO contributions to the Fermi contact term indicate mainly the presence of the HB that may or not be linked to the π‐electrons. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Five polyfluorenes bearing bulky trimethylsilyl (PTMS1 and PTMS2), tris(trimethylsilyl)silyl (PTTMS1), and silsesquioxane groups (PPOSS1 and PPOSS2) were synthesized through palladium‐catalyzed Suzuki coupling reactions. In the solution state, every polymer showed comparable ultraviolet–visible spectra, and they emitted blue light with high quantum efficiency. In the solid state, however, three trimethylsilyl‐functionalized polyfluorenes indicated redshifts of the fluorescence peak. In particular, PTMS1 and PTTMS1, having a hydrogen at the C‐9 position of fluorene, also showed green‐light emissions. After the annealing of the spin‐coated films, the blue‐emissive peak decreased and the green‐emissive peak became stronger in the photoluminescence spectra of three trimethylsilyl‐functionalized polyfluorenes. In contrast, PPOSS2 showed a pure blue‐light emission in the film state and even after the thermal treatment, which could be accomplished by the encapsulation of the polymer chains by the large polyhedral oligomeric silsesquioxane molecule. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2119–2127, 2005  相似文献   

14.
This paper describes the spontaneous vesicular assembly of a naphthalene–diimide (NDI)‐based non‐ionic bolaamphiphile in aqueous medium by using the synergistic effects of π‐stacking and hydrogen bonding. Site isolation of the hydrogen‐bonding functionality (hydrazide), a strategy that has been adopted so elegantly in nature, has been executed in this system to protect these moieties from the bulk water so that the distinct role of hydrogen bonding in the self‐assembly of hydrazide‐functionalized NDI building blocks could be realized, even in aqueous solution. Furthermore, the electron‐deficient NDI‐based bolaamphiphile could engage in donor–acceptor (D–A) charge‐transfer (CT) interactions with a water‐insoluble electron‐rich pyrene donor by virtue of intercalation of the latter chromophore in between two NDI building blocks. Remarkably, even when pyrene was located between two NDI blocks, intermolecular hydrogen‐bonding networks between the NDI‐linked hydrazide groups could be retained. However, time‐dependent AFM studies revealed that the radius of curvature of the alternately stacked D–A assembly increased significantly, thereby leading to intervesicular fusion, which eventually resulted in rupturing of the membrane to form 1D fibers. Such 2D‐to‐1D morphological transition produced CT‐mediated hydrogels at relatively higher concentrations. Instead of pyrene, when a water‐soluble carboxylate‐functionalized pyrene derivative was used as the intercalator, non‐covalent tunable in‐situ surface‐functionalization could be achieved, as evidenced by the zeta‐potential measurements.  相似文献   

15.
Nucleobase‐directed spin‐labeling by the azide‐alkyne ‘click’ (CuAAC) reaction has been performed for the first time with oligonucleotides. 7‐Deaza‐7‐ethynyl‐2′‐deoxyadenosine ( 1 ) and 5‐ethynyl‐2′‐deoxyuridine ( 2 ) were chosen to incorporate terminal triple bonds into DNA. Oligonucleotides containing 1 or 2 were synthesized on a solid phase and spin labeling with 4‐azido‐2,2,6,6‐tetramethylpiperidine 1‐oxyl (4‐azido‐TEMPO, 3 ) was performed by post‐modification in solution. Two spin labels ( 3 ) were incorporated with high efficiency into the DNA duplex at spatially separated positions or into a ‘dA‐dT’ base pair. Modification at the 5‐position of the pyrimidine base or at the 7‐position of the 7‐deazapurine residue gave steric freedom to the spin label in the major groove of duplex DNA. By applying cw and pulse EPR spectroscopy, very accurate distances between spin labels, within the range of 1–2 nm, were measured. The spin–spin distance was 1.8±0.2 nm for DNA duplex 17 ( dA*7,10 ) ?11 containing two spin labels that are separated by two nucleotides within one individual strand. A distance of 1.4±0.2 nm was found for the spin‐labeled ‘dA‐dT’ base pair 15 ( dA*7 ) ?16 ( dT*6 ). The ‘click’ approach has the potential to be applied to all four constituents of DNA, which indicates the universal applicability of the method. New insights into the structural changes of canonical or modified DNA are expected to provide additional information on novel DNA structures, protein interaction, DNA architecture, and synthetic biology.  相似文献   

16.
A benzene‐1,3,5‐triaminyl radical fused with three ZnII‐porphyrins was synthesized through a three‐fold oxidative fusion reaction of 1,3,5‐tris(ZnII‐porphyrinylamino)benzene followed by oxidation with PbO2 as key steps. This triaminyl radical has been shown to possess a quartet ground state with a doublet–quartet energy gap of 3.1 kJ mol?1 by superconducting quantum interference device (SQUID) studies. Despite its high‐spin nature, this triradical is remarkably stable, which allows its separation and recrystallization under ambient conditions. Moreover, this triradical can be stored as a solid for more than one year without serious deterioration. The high stability of the triradical is attributed to effective spin delocalization over the porphyrin segments and steric protection at the nitrogen centers and the porphyrin meso positions.  相似文献   

17.
In tris(4‐hydroxy­phenyl)­methane (or 4,4′,4′′‐methane­triyl­tri­phenol), C19H16O3, mol­ecules are connected by O—H⃛O hydrogen bonds [O⃛O = 2.662 (2) and 2.648 (2) Å] into two‐dimensional square networks that are twofold interpenetrated. In tris(4‐hydroxy­phenyl)­methane–4,4′‐bi­pyridine (1/1), C19H16O3·C10H8N2, trisphenol mol­ecules form rectangular networks via O—H⃛O [O⃛O = 2.694 (3) Å] and C—H⃛O [C⃛O = 3.384 (3) Å] hydrogen bonds. Bi­pyridine mol­ecules hydrogen bonded to phenol moieties [O⃛N = 2.622 (3) and 2.764 (3) Å] fill the voids to complete the structure.  相似文献   

18.
We have synthesized a microporous magnetic framework that contained supertetrahedral decametallic cobalt clusters as nodes and 4‐(tris(hydroxymethyl)methyl)pyridine ligands as linkers in a NaCl‐like network. This complex shows canted antiferromagnetism with spin‐glass behavior. After the removal of the guest molecules, the spin‐canting and spin‐glass behaviors are maintained. The permanent porosity was evaluated by N2‐adsorption measurements. This complex mainly shows a hydrophobic nature, as validated by MeOH‐ and water‐adsorption measurements, which is consistent with the grand canonical Monte Carlo (GCMC) theoretical simulation.  相似文献   

19.
A mesomeso‐linked diphenylamine‐fused porphyrin dimer and its methoxy‐substituted analogue were synthesized from a mesomeso‐linked porphyrin dimer by a reaction sequence involving Ir‐catalyzed β‐selective borylation, iodination, meso‐chlorination, and SNAr reactions with diarylamines followed by electron‐transfer‐mediated intramolecular double C?H/C?I coupling. While these dimers commonly display characteristic split Soret bands and small oxidation potentials, they produced different products upon oxidation with tris(4‐bromophenyl)aminium hexachloroantimonate. Namely, the diphenylamine‐fused porphyrin dimer was converted into a dicationic closed‐shell quinonoidal dimer, while the methoxy‐substituted dimer gave a mesomeso, β‐β doubly linked porphyrin dimer.  相似文献   

20.
Electronic structures of the weakly bound Rn2 were calculated by the two‐component Møller–Plesset second‐order perturbation and coupled‐cluster methods with relativistic effective core potentials including spin–orbit operators. The calculated spin–orbit effects are small, but depend strongly on the size of basis sets and the amount of electron correlations. Magnitudes of spin–orbit effects on De (0.7–3.0 meV) and Re (−0.4∼−2.2 Å) of Rn2 are comparable to previously reported values based on configuration interaction calculations. A two‐component approach seems to be a promising tool to investigate spin–orbit effects for the weak‐bonded systems containing heavy elements. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 139–143, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号