首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以聚乙烯吡咯烷酮(PVP)为高分子模板剂,乙酰丙酮钒(C_(15)H_(21)O_6V)和三水合硝酸铜[Cu(NO_3)_2·3H_2O]为原料,导电玻璃(FTO)为载体,结合溶胶-凝胶法和静电纺丝技术制备了前驱体纤维,经高温焙烧后得到分布均匀、具有纤维结构的导电玻璃负载的CuO/V_2O_5复合光电极(CuO/V_2O_5/FTO).采用热重-差热分析仪(TG-DTA)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线光电子能谱仪(XPS)等对材料的结构进行表征,以亚甲基蓝(MB)为目标降解物,探讨了合成产物的光电催化性能.结果表明,CuO与V_2O_5能有效形成异质结构,其光电催化活性均比纯V_2O_5有明显提高,并且改变CuO与V_2O_5的比例对光电催化性能有较大影响,其中n(Cu)∶n(V)=1∶1时降解效率最高,达到96%.  相似文献   

2.
ZnO doped with Cr, Mn, Fe, Co, Ni and Cu was prepared by homogeneous hydrolysis of sulfates with urea. The samples were annealed at various temperatures and characterized by X‐ray powder diffraction, UV/VIS reflectance spectroscopy, BET (Brunauer‐Emmet‐Teller) surface area and porosity measurements. The photocatalytic activity of the samples was evaluated by measuring the degradation of an organic dye Reactive Black 5. The morphology of the samples was determined by scanning electron microscopy and atomic force microscopy. For the Cu‐doped ZnO sample, EPR spectra were obtained. All samples annealed at 800°C contained hexagonal ZnO. In the VIS region, the best photocatalytic performance had the ZnO samples doped with Cr, Fe and Cu.  相似文献   

3.
Hierarchical macro‐/mesoporous N‐doped TiO2/graphene oxide (N‐TiO2/GO) composites were prepared without using templates by the simple dropwise addition mixed solution of tetrabutyl titanate and ethanol containg graphene oxide (GO) to the ammonia solution, and then calcined at 350 °C. The as‐prepared samples were characterized by scanning electron microscopy (SEM), Brunauer‐Emmett‐Teller (BET) surface area, X‐ray diffraction (XRD), Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), and UV‐Vis absorption spectroscopy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange in an aqueous solution under visible‐light irradiation. The results show that N‐TiO2/GO composites exhibited enhanced photocatalytic activity. GO content exhibited an obvious influence on photocatalytic performance, and the optimal GO addition content was 1 wt%. The enhanced photocatalytic activity could be attributed to the synergetic effects of three factors including the improved visible light absorption, the hierarchical macro‐mesoporous structure, and the efficient charge separation by GO.  相似文献   

4.
Core‐shell copper/silver bimetallic nanowires were prepared by replacement reaction with citric acid and polyvinylpyrollidone at room temperature. A uniform silver coating was obtained by strictly controlling the molar ratio of Ag/Cu. The copper/silver composite was characterized by X‐ray diffraction, scanning electron microscopy, electron probe microanalysis and X‐ray photoelectron spectroscopy. Microscopic analysis shows that a well‐copper/silver core‐shell structure was formed. Thermo‐gravimetry and differential thermal analysis to the composite nanowires show that the silver coatings efficiently inhibit the oxidation of Cu. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Graphene oxide/Mg‐doped ZnO/tungsten oxide quantum dots composites (WQGOMZ) were prepared through co‐precipitation method, and were studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Fluorescence spectra (FL), and UV–vis diffuse reflection spectra. Furthermore, the photocatalytic activity of resultant WQGOMZ was evaluated under nature sunlight. Experimental results showed that WO3QDs can remarkably heighten the photocatalytic activity of GOMZ composite, in which is nearly 6.58 times higher than that of GOMZ composite. Simultaneously, WQGOMZ composites possess optical memory ability and maintain high photocatalytic stability for more than 40 days. The enhanced photocatalytic activity and optical memory ability are attributed to the effective synergistic effect between ZnO and WO3QDs.  相似文献   

6.
Bi‐doped TiO2 nanotubes with variable Bi/Ti ratios were synthesized by hydrothermal treatment in 10 mol·L?1 NaOH (aq.) through using Bi‐doped TiO2 particles derived from conventional sol‐gel method as starting materials. The effects of Bi content on the morphology, textural properties, photo absorption and photocatalytic activity of TiO2 nanotubes were investigated. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS) observations of the obtained samples revealed the formation of titanate nanotube structure doped with Bi, which exists as a higher oxidation state than Bi3+. Bi‐doping TiO2 nanotubes exhibited an extension of light absorption into the visible region and improved photocatalytic activities for hydrogen production from a glycerol/water mixed solution as compared with pure TiO2 nanotubes. There was an optimal Bi‐doped content for the photocatalytic hydrogen production, and high content of Bi would retard the phase transition of titanate to anatase and result in morphology change from nanotube to nanobelt, which in turn decreases the photocatlytic activity for hydrogen evolution.  相似文献   

7.
The surface modification of Ag/Ag2CO3 with Fe(III) ions has been achieved through simply photoreduction‐impregnation method. The obtained products were characterized by means of X‐ray diffraction (XRD), scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), and UV‐vis absorption spectroscopy. Under visible‐light irradiation (γ>420 nm), the Fe(III)/Ag/Ag2CO3 sample displays a higher photocatalytic activity and stability than pure Ag2CO3 and Ag/Ag2CO3 samples for the degradation of methyl orange (MO). The improved photocatalytic activity and stability of this ternary system could be ascribed to the synergetic effect between Ag nanoparticles and Fe(III) nanocluster. The metallic Ag nanoparticles cause an obviously enhanced visible‐light absorption to produce more photogenerated charges, while the Fe(III) works as an active site for the following oxygen reduction to reduce the recombination rate of photogenerated electrons and holes.  相似文献   

8.
A picolinaldehyde–melamine copper complex was loaded on a magnetic Fe3O4 core, so that it contained 0.33 mmol of Cu per gram, and was used as an efficient catalyst. The as‐synthesized catalyst was characterized using various techniques, including Fourier transform infrared spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry and thermogravimetric analysis. The catalyst was used to activate the raw materials in the synthesis of hexahydroquinoline derivatives in one‐pot four‐component reactions. Low reaction time (minutes versus half an hour), solvent‐free condition and magnetically separable catalyst are some salient features of the developed catalyst. Also, the optimum amount of catalyst and temperature were determined as 0.07 g and 87.6 °C, respectively, which were obtained using response surface methodology and optimization techniques.  相似文献   

9.
One‐dimensional (1D) CeO2/Bi2WO6 heterostructured nanofibers with a diameter of about 300 nm were successfully synthesized by using a straightforward strategy combining an electrospinning technique with a sintering process. The acquired products were characterized by thermogravimetric and differential scanning calorimetric (TG‐DSC), Fourier transform infrared (FT‐IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area measurements, and UV/Vis spectroscopy. The obtained CeO2/Bi2WO6 heterostructured nanofibers exhibited an excellent photocatalytic property for the degradation of Rhodamine B (RhB) dye driven by visible light due to the promoted separation of photoelectrons and holes and the large contact area between the photocatalyst and organic pollutant.  相似文献   

10.
A new nano scale Cu‐MOF has been obtained via post‐synthetic metalation by immersing a Zn‐MOF as a template in DMF solutions of copper(II) salts. The Cu‐MOF serves as recyclable nano‐catalyst for the preparation of 5‐substituted 1H‐tetrazoles via [3 + 2] cycloaddition reaction of various nitriles and sodium azide in a green medium (PEG). The post‐synthetic metalated MOF were characterized by FT‐IR spectroscopy, powder X‐ray diffraction (PXRD), atomic absorption spectroscopy (AAS), and energy dispersive X‐ray spectroscopy (EDX) techniques. The morphology and size of the nano‐catalyst were determined by field emission scanning electron microscopy (FE‐SEM).  相似文献   

11.
By means of a simple ion‐exchange process (using different precursors) and a light‐induced chemical reduction reaction, highly efficient Ag@AgCl plasmonic photocatalysts with various self‐assembled structures—including microrods, irregular balls, and hollow spheres—have been fabricated. All the obtained Ag@AgCl catalysts were characterized by means of X‐ray diffraction, X‐ray photoelectron spectroscopy, scanning electron microscopy, and UV‐visible diffuse reflectance spectroscopy. The effect of the different morphologies on the properties of the photocatalysts was studied. The average content of elemental Ag in Ag@AgCl was found to be about 3.2 mol %. All the catalysts show strong absorption in the visible‐light region. The obtained Ag@AgCl samples exhibit enhanced photocatalytic activity for the degradation of organic contaminants under visible‐light irradiation. The stability of the plasmonic photocatalysts was also investigated in detail.  相似文献   

12.
Ag3PO4 spherical particles were synthesized by a facile precipitation method using silver nitrate and Na2HPO4 as precursors. The as‐prepared samples had a high photocatalytic activity toward Rhodamine B (RhB) degradation under visible‐light illumination. With increasing recycling times the photocatalytic activity first increased and then decreased. Based on systematic characterization of particles by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), UV/Vis absorption spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM), a possible mechanism responsible for the improvement and subsequent decline of the photocatalytic performance of Ag3PO4 is proposed. Ag3PO4 spherical particles recycled for four times showed the highest photocatalytic activity because, according to our mechanism, Ag nanoparticles deposited on Ag3PO4 acted as electron trapping centers to prevent photogenerated electron‐hole pairs from recombination. A further increase in the recycle times decreases the photocatalytic activity owing to the shielding effect by Ag layers on the surface of Ag3PO4. The results presented herein shed new light on the photostability of Ag3PO4 spherical particles and are potentially applicable to other photocatalytically active composites.  相似文献   

13.
Multicomponent Cu? Cu2O? TiO2 nanojunction systems were successfully synthesized by a mild chemical process, and their structure and composition were thoroughly analyzed by X‐ray diffraction, transmission electron microscopy, field‐emission scanning electron microscopy, and X‐ray photoelectron spectroscopy. The as‐prepared Cu? Cu2O? TiO2 (3 and 9 h) nanojunctions demonstrated higher photocatalytic activities under UV/Vis light irradiation in the process of the degradation of organic compounds than those of the Cu? Cu2O, Cu? TiO2, and Cu2O? TiO2 starting materials. Moreover, time‐resolved photoluminescence spectra demonstrated that the quenching times of electrons and holes in Cu? Cu2O? TiO2 (3 h) is higher than that of Cu? Cu2O? TiO2 (9 h); this leads to a better photocatalytic performance of Cu? Cu2O? TiO2 (3 h). The improvement in photodegradation activity and electron–hole separation of Cu? Cu2O? TiO2 (3 h) can be ascribed to the rational coupling of components and dimensional control. Meanwhile, an unusual electron–hole transmission pathway for photocatalytic reactions over Cu? Cu2O? TiO2 nanojunctions was also identified.  相似文献   

14.
The reduced graphene oxide‐Bi2WO6 (rGO‐BWO) photocatalysts with the different RF/O values (molar ratio of the F molar mass and the O's molar mass of Bi2WO6) had been successfully synthesized via one‐step hydrothermal method. The F‐doped rGO‐BWO samples were characterized by X‐ray diffraction patterns (XRD), field‐emission scanning electron microscopy (FE‐ESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area (BET), X‐ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectra (DRS). The results indicate that F? ions had been successfully doped into rGO‐BWO samples. With the increasing of the RF/O values from 0 to 2%, the evident change of the morphology and the absorption edges of F‐doped rGO‐BWO samples and the photocatalytic activities had been enhanced. Moreover, the photocatalytic activity of F‐doped rGO‐BWO with RF/O = 0.05 were better than rGO‐BWO and the other F‐doped rGO‐BWO under 500 W Xe lamp light irradiation. The enhanced photocatalytic activity can be attributed to the morphology of the intact microsphere that signify the bigger specific surface area for providing more possible reaction sites for the adsorption–desorption equilibrium of photocatalytic reaction, the introduction of F? ions that may cause the enhancement of surface acidity and creation of oxygen vacancies under visible light irradiation, the narrower band gap which means needing less energy for the electron hole pair transition.  相似文献   

15.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

16.
Because of their desired features, including very specific surface areas and designable framework architecture together with their possibility to be functionalized, Metal Framework (MOF) is a promising platform for supporting varied materials in respect of catalytic applications in water treatment. In this work, a novel visible‐light‐responsive photocatalyst that comprised BiVO4 together with MIL‐125(Ti), was synthesized by a two‐step hydrothermal approach. The characterization of as‐obtained samples as performed by X‐ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, Fourier transform infrared spectroscope, X‐ray photoelectron spectroscopy and ultraviolet‐visible diffuse reflection spectra. Rhodamine B was selected being a target for the evaluation of the photocatalytic function of as‐developed photocatalyst. The photocatalytic reaction parameters, for example, the content of BiVO4 as well as initial concentration of Rhodamine B was researched. The composite photocatalyst possessing Bi:Ti molar ratio of 3:2 brought to light the fact that the greatest photocatalytic activity had the ability to degrade 92% of Rhodamine B in 180 min. In addition to that, the BiVO4/MIL‐125(Ti) composite could keep its photocatalytic activity during the recycling test. The phenomenon of disintegration of the photo‐generated charges in the BiVO4/MIL‐125(Ti) composite was brought to discussion as well.  相似文献   

17.
《中国化学会会志》2017,64(2):188-194
Rod‐like ZnO nanoparticles (NPs ) were synthesized from zinc powder by a simple hydrothermal oxidation method. The presence of acetylacetone could promote the oxidation reaction of Zn and the formation of hexagonal nanorods. Then, the as‐prepared samples were annealed in N2 , O2 , and air atmosphere at 550°C for 2 h to control the number of oxygen vacancies in the samples. The samples were characterized by X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy, and UV –vis spectroscopy. The correlation between the oxygen vacancies and the photocatalytic activity was investigated. The results reveal that the annealing process alters the samples’ bandgap and number of the oxygen vacancies, thereby improving the photocatalytic activity. The enhancement of photodegradation efficiency arising from the appropriate content of oxygen vacancies is discussed.  相似文献   

18.
Corrosion layers in some copper and bronze archaeological objects from Haft Tappeh archaeological site, southwest Iran, were studied. For this purpose, optical microscopy, scanning electron microscopy with energy dispersive X‐ray microanalysis, micro‐Raman spectroscopy and X‐ray diffraction methods were applied to observe corrosion stratigraphy and their characteristics as well as identification of chemical composition and phase determination of different corrosion layers. Based on optical and electron microscopy, three different corrosion strata were identified in cross section of different metallic objects including various red, green, white‐grey powdery and dark internal compact layers. Scanning electron microscopy with energy dispersive X‐ray microanalysis on different corrosion layers revealed that Cu, Sn and Cl are the main elements in the chemical composition of different layers. Tin‐rich phases were detected in white‐grey and dark layers that may be formed because of the internal oxidation of tin as well as the decuprification (selective dissolution of copper) phenomena occurring during long‐term burial period in the soil. Also, the XRD and micro‐Raman spectroscopy results proved that the main corrosion products are nantokite (CuCl), copper trihydroxychlorides and copper oxides. The combination of these analytical methods allows us to explore the surface and internal corrosion layers of the archaeological copper and bronze samples, and major interest is on studying their chemistry, microstructural properties and corrosion stratigraphy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In the paper, the glow discharge optical emission spectroscopy, X‐ray photoelectron spectroscopy, scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy results of a commercial purity titanium grade 2 after plasma electrolytic oxidation (PEO), also known as micro arc oxidation (MAO), are presented. The PEO treatment was performed in the electrolyte containing concentrated (85%) phosphoric acid with copper nitrate at the voltage of 450 ± 10 V for 1 min. For the electrolyte, copper nitrate addition from 300 to 600 g/l was used. Porous coatings of specific properties were obtained. The measurements results allow to state that the copper and nitrogen ions can be introduced into the surface layer formed on pure titanium by the plasma electrolytic oxidation. The distributions of these elements were detected to depend on the electrolyte composition, with the highest amounts revealed in the coating created in the electrolyte containing 600 g Cu(NO3)2 in 1 l H3PO4. Three sub‐layers of the coating, displayed in this work by two models, were developed in the study. The analysis performed shows that under the PEO treatment in each of the electrolytes used, the formation of coating with the top sub‐layers always enriched in copper compounds was found. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号