首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that if G is a 3-connected graph of minimum degree at least 4 and with |V (G)| ≥ 7 then one of the following is true: (1) G has an edge e such that G/e is a 3-connected graph of minimum degree at least 4; (2) G has two edges uv and xy with ux, vy, vxE(G) such that the graph G/uv/xy obtained by contraction of edges uv and xy in G is a 3-connected graph of minimum degree at least 4; (3) G has a vertex x with N(x) = {x1, x2, x3, x4} and x1x2, x3x4E(G) such that the graph (G ? x)/x1x2/x3x4 obtained by contraction of edges x1x2 and x3x4 in Gx is a 3-connected graph of minimum degree at least 4.

Each of the three reductions is necessary: there exists an infinite family of 3- connected graphs of minimum degree not less than 4 such that only one of the three reductions may be performed for the members of the family and not the two other reductions.  相似文献   

2.
We prove that the vertex set of a simple graph with minimum degree at least s + t − 1 and girth at least 5 can be decomposed into two parts, which induce subgraphs with minimum degree at least s and t, respectively, where s, t are positive integers ≥ 2. © 2000 John Wiley & Sons, Inc: J Graph Theory 33: 237–239, 2000  相似文献   

3.
4.
In this paper we prove two results. The first is an extension of a result of Dirac which says that any set of n vertices of an n‐connected graph lies in a cycle. We prove that if V′ is a set of at most 2n vertices in an n‐connected graph G, then G has, as a minor, a cycle using all of the vertices of V′. The second result says that if G is an n+1‐connected graph with maximum vertex degree Δ then G contains a subgraph that is a subdivision of W2n if and only if Δ≥2n. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 100–108, 2009  相似文献   

5.
Let denote the graph obtained from the complete graph by deleting the edges of some ‐subgraph. The author proved earlier that for each fixed s and , every graph with chromatic number has a minor. This confirmed a partial case of the corresponding conjecture by Woodall and Seymour. In this paper, we show that the statement holds already for much smaller t, namely, for .  相似文献   

6.
The clique graph K(G) of a given graph G is the intersection graph of the collection of maximal cliques of G. Given a family ℱ of graphs, the clique‐inverse graphs of ℱ are the graphs whose clique graphs belong to ℱ. In this work, we describe characterizations for clique‐inverse graphs of K3‐free and K4‐free graphs. The characterizations are formulated in terms of forbidden induced subgraphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 257–272, 2000  相似文献   

7.
《Journal of Graph Theory》2018,87(3):362-373
For an edge‐colored graph, its minimum color degree is defined as the minimum number of colors appearing on the edges incident to a vertex and its maximum monochromatic degree is defined as the maximum number of edges incident to a vertex with a same color. A cycle is called properly colored if every two of its adjacent edges have distinct colors. In this article, we first give a minimum color degree condition for the existence of properly colored cycles, then obtain the minimum color degree condition for an edge‐colored complete graph to contain properly colored triangles. Afterwards, we characterize the structure of an edge‐colored complete bipartite graph without containing properly colored cycles of length 4 and give the minimum color degree and maximum monochromatic degree conditions for an edge‐colored complete bipartite graph to contain properly colored cycles of length 4, and those passing through a given vertex or edge, respectively.  相似文献   

8.
We show via an exhaustive computer search that there does not exist a (K6?e)‐decomposition of K29. This is the first example of a non‐complete graph G for which a G‐decomposition of K2|E(G)|+1 does not exist. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 94–104, 2010  相似文献   

9.
A graph H is light in a given class of graphs if there is a constant w such that every graph of the class which has a subgraph isomorphic to H also has a subgraph isomorphic to H whose sum of degrees in G is ≤ w. Let be the class of simple planar graphs of minimum degree ≥ 4 in which no two vertices of degree 4 are adjacent. We denote the minimum such w by w(H). It is proved that the cycle Cs is light if and only if 3 ≤ s ≤ 6, where w(C3) = 21 and w(C4) ≤ 35. The 4‐cycle with one diagonal is not light in , but it is light in the subclass consisting of all triangulations. The star K1,s is light if and only if s ≤ 4. In particular, w(K1,3) = 23. The paths Ps are light for 1 ≤ s ≤ 6, and heavy for s ≥ 8. Moreover, w(P3) = 17 and w(P4) = 23. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 261–295, 2003  相似文献   

10.
In 1960, Dirac posed the conjecture that r‐connected 4‐critical graphs exist for every r ≥ 3. In 1989, Erd?s conjectured that for every r ≥ 3 there exist r‐regular 4‐critical graphs. In this paper, a technique of constructing r‐regular r‐connected vertex‐transitive 4‐critical graphs for even r ≥ 4 is presented. Such graphs are found for r = 6, 8, 10. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 103–130, 2004  相似文献   

11.
In this article, we show that every simple r‐regular graph G admits a balanced P4‐decomposition if r ≡ 0(mod 3) and G has no cut‐edge when r is odd. We also show that a connected 4‐regular graph G admits a P4‐decomposition if and only if |E(G)| ≡ 0(mod 3) by characterizing graphs of maximum degree 4 that admit a triangle‐free Eulerian tour. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 135–143, 1999  相似文献   

12.
In this paper, the minimum degree of power graphs of certain cyclic groups, abelian p-groups, dihedral groups and dicyclic groups are obtained. It is ascertained that the edge-connectivity and minimum degree of power graphs are equal, and consequently, the minimum disconnecting sets of power graphs of the aforementioned groups are determined. In order to investigate the equality of connectivity and minimum degree of power graphs, certain necessary conditions for finite groups and a necessary and su?cient condition for finite cyclic groups are obtained. Moreover, the equality is discussed for the power graphs of abelian p-groups, dihedral groups and dicyclic groups.  相似文献   

13.
We write HG if every 2‐coloring of the edges of graph H contains a monochromatic copy of graph G. A graph H is Gminimal if HG, but for every proper subgraph H′ of H, H′ ? G. We define s(G) to be the minimum s such that there exists a G‐minimal graph with a vertex of degree s. We prove that s(Kk) = (k ? 1)2 and s(Ka,b) = 2 min(a,b) ? 1. We also pose several related open problems. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 167–177, 2007  相似文献   

14.
Planar graphs with maximum degree Δ ⩾ 8 and without 5- or 6-cycles with chords are proved to be (δ + 1)-totally-colorable. This work was supported by Natural Science Foundation of Ministry of Education of Zhejiang Province, China (Grant No. 20070441)  相似文献   

15.
We study a scale‐free random graph process in which the number of edges added at each step increases. This differs from the standard model in which a fixed number, m, of edges are added at each step. Let f(t) be the number of edges added at step t. In the standard scale‐free model, f(t) = m constant, whereas in this paper we consider f(t) = [tc],c > 0. Such a graph process, in which the number of edges grows non‐linearly with the number of vertices is said to have accelerating growth. We analyze both an undirected and a directed process. The power law of the degree sequence of these processes exhibits widely differing behavior. For the undirected process, the terminal vertex of each edge is chosen by preferential attachment based on vertex degree. When f(t) = m constant, this is the standard scale‐free model, and the power law of the degree sequence is 3. When f(t) = [tc],c < 1, the degree sequence of the process exhibits a power law with parameter x = (3 ? c)/(1 ? c). As c → 0, x → 3, which gives a value of x = 3, as in standard scale‐free model. Thus no more slowly growing monotone function f(t) alters the power law of this model away from x = 3. When c = 1, so that f(t) = t, the expected degree of all vertices is t, the vertex degree is concentrated, and the degree sequence does not have a power law. For the directed process, the terminal vertex is chosen proportional to in‐degree plus an additive constant, to allow the selection of vertices of in‐degree zero. For this process when f(t) = m is constant, the power law of the degree sequence is x = 2 + 1/m. When f(t) = [tc], c > 0, the power law becomes x = 1 + 1/(1 + c), which naturally extends the power law to [1,2]. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 38, 396–421, 2011  相似文献   

16.
We prove that the size of the largest face of a 4-critical planar graph with 4 is at most one half the number of its vertices. Letf(n) denote the maximum of the sizes of largest faces of all such graphs withn vertices (n sufficiently large). We present an infinite family of graphs that shows .All three authors gratefully acknowledge the support of the National Science and Engineering Research Council of Canada.  相似文献   

17.
18.
Let n≥2 be an integer. The complete graph Kn with a 1‐factor F removed has a decomposition into Hamilton cycles if and only if n is even. We show that KnF has a decomposition into Hamilton cycles which are symmetric with respect to the 1‐factor F if and only if n≡2, 4 mod 8. We also show that the complete bipartite graph Kn, n has a symmetric Hamilton cycle decomposition if and only if n is even, and that if F is a 1‐factor of Kn, n, then Kn, nF has a symmetric Hamilton cycle decomposition if and only if n is odd. © 2010 Wiley Periodicals, Inc. J Combin Designs 19:1‐15, 2010  相似文献   

19.
《Journal of Graph Theory》2018,89(2):214-245
Minimum bisection denotes the NP‐hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the width of the bisection, which is defined as the number of edges between these two sets. It is intuitively clear that graphs with a somewhat linear structure are easy to bisect, and therefore our aim is to relate the minimum bisection width of a bounded‐degree graph G to a parameter that measures the similarity between G and a path. First, for trees, we use the diameter and show that the minimum bisection width of every tree T on n vertices satisfies . Second, we generalize this to arbitrary graphs with a given tree decomposition  and give an upper bound on the minimum bisection width that depends on how close  is to a path decomposition. Moreover, we show that a bisection satisfying our general bound can be computed in time proportional to the encoding length of the tree decomposition when the latter is provided as input.  相似文献   

20.
A graph is one‐ended if it contains a ray (a one way infinite path) and whenever we remove a finite number of vertices from the graph then what remains has only one component which contains rays. A vertex v dominates a ray in the end if there are infinitely many paths connecting v to the ray such that any two of these paths have only the vertex v in common. We prove that if a one‐ended graph contains no ray which is dominated by a vertex and no infinite family of pairwise disjoint rays, then it has a tree‐decomposition such that the decomposition tree is one‐ended and the tree‐decomposition is invariant under the group of automorphisms. This can be applied to prove a conjecture of Halin from 2000 that the automorphism group of such a graph cannot be countably infinite and solves a recent problem of Boutin and Imrich. Furthermore, it implies that every transitive one‐ended graph contains an infinite family of pairwise disjoint rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号