首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rates of electron scattering via phonons in the armchair single-wall carbon nanotubes were calculated by using the improved scattering theory within the tight-binding approximation. Therefore, the problem connected with the discrepancy of the scattering rates calculated in the framework of the classical scattering theory and ones predicted by experimental data was clarified. Then these results were used for the solving of the kinetic Boltzmann equation to describe electron transport properties of the nanotubes. The equation was solved numerically by using both the finite difference approach and the Monte Carlo simulation procedure.  相似文献   

2.
Nearly all electronic equipment is susceptible to malfunction as a result of electromagnetic interference. In this study, glass fiber, and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave.  相似文献   

3.
We calculate the electron-phonon scattering and binding in semiconducting carbon nanotubes, within a tight-binding model. The mobility is derived using a multiband Boltzmann treatment. At high fields, the dominant scattering is interband scattering by LO phonons corresponding to the corners K of the graphene Brillouin zone. The drift velocity saturates at approximately half the graphene Fermi velocity. The calculated mobility as a function of temperature, electric field, and nanotube chirality are well reproduced by a simple interpolation formula. Polaronic binding give a band-gap renormalization of approximately 70 meV, an order of magnitude larger than expected. Coherence lengths can be quite long but are strongly energy dependent.  相似文献   

4.
We present transport measurements of ferromagnetically contacted carbon nanotubes. In both single- and multi-walled nanotube devices, a spin valve effect is observed due to spin-polarized transport. In one single-walled nanotube device, the spin-valve effect is suppressed as the influence of Coulomb charging is observed at around 10 K. To help understand the interplay between the Coulomb charging and the spin-polarized transport we investigated the temperature dependence of the carbon nanotube magnetoresistance.  相似文献   

5.
The paper presents the simulation and possible physical implementation of a resonant tunneling diode based on a semiconducting single-walled carbon nanotube, which exceeds the performance of similar resonant tunneling devices based on semiconductor heterostructures. In this respect, the oscillation frequency and the output power are predicted to be greater by one order of magnitude, attaining 16 THz and 2.5 μW, respectively. The generated THz signal is directly radiated into free-space through the injection contacts of the resonant tunneling diode, which have the shape of a bowtie antenna.  相似文献   

6.
Thanks to their excellent mechanical properties as well as interesting electrical characteristics, carbon nanotubes are among the most widely used materials for the study of electromechanical properties. This review paper presents the physical properties and the potential applications of carbon nanotube based nanoelectromechanical devices. We present an overview of fabrication methods followed by a discussion of the physical properties of CNT-NEMS. Finally some potential applications are discussed.  相似文献   

7.
We use ab initio density-functional calculations to investigate the electronic structure of the bromine-adsorbed carbon nanotubes. When a Br2 molecule is inside the (10,0) carbon nanotube, a trace of electron charge transfers from the nanotube to the Br2 adsorbate, resulting in an increased Br–Br bond length. When the supercell contains two Br2 molecules, total energy calculations reveal the formation of a linear chain of bromine atoms inside the carbon nanotube. Electron transfer from the nanotube to the atomic chains of the bromine adsorbates is much enhanced even in large-diameter nanotubes. We suggest that an exposure of the tip-opened carbon nanotube samples to a modest Br2 partial pressure could result in a strong hole-doping of the nanotube, which makes the semiconducting nanotubes nearly metallic.  相似文献   

8.
The existence of pronounced negative differential conductance at room temperature in suspended metallic carbon nanotubes was recently proven. We investigate here the physical nature of this phenomenon, which is of considerable importance for high-frequency devices, such as oscillators working up to few hundreds of GHz. Besides previous explanations, we find a new physical mechanism that explains the negative differential conductivity at room temperature. The entire suspended metallic carbon nanotube behaves as a very large quantum well, the negative differential conductance occurring due to the depletion of carriers on high-energy resonant levels.  相似文献   

9.
The basic growth of carbon nanotubes (CNTs) involves dissociation of hydrocarbon molecules over a metal layer as a catalyst. Generally, the metals used for the catalyst include nickel, cobalt, gold, iron, platinum, and palladium. However, the metal catalyst used with CNTs could have a harmful influence on the electrical properties of electronic devices. Therefore, we propose the use of nanocrystalline carbon (nc-C) as the catalyst for the growth of CNTs. We used a nc-C catalyst layer deposited by the closed-field unbalanced magnetron (CFUBM) sputtering method, and CNTs were grown by the hot filament plasma-enhanced chemical vapor deposition (HF-PECVD) method with ammonia (NH3) as a pretreatment and acetylene gas (C2H2) as a carbon source. The CNTs were grown on the nc-C layers pretreated with a variation of the pretreatment time. The characteristics of the pretreated nc-C layers and the grown CNTs were investigated by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) measurements. Also, the structural variation of the pretreated nc-C layers was investigated by Raman measurement. We used the nc-C catalyst without metal, and we confirmed that our CNTs were composed with only carbon elements through an EDS measurement. Also, the pretreatment time was attributed to the growth of CNTs.  相似文献   

10.
Highly disordered multiwalled carbon nanotubes of large outer diameter (∼60 nm) fabricated by means of chemical vapor deposition process inside porous alumina templates exhibit ferromagnetism when annealed in a H2/Ar atmosphere. In the presence of an applied magnetic field, there is a transition from positive to negative magnetoresistance. The transition may be explained in terms of the Bright model for ordered and disordered carbon structures. Additionally, temperature dependent electrical transport experiments exhibit a zero-bias anomaly at low temperature.  相似文献   

11.
Electrical transport measurements on single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
We review transport measurements on single-walled carbon nanotubes contacted by metal electrodes. At room temperature some devices show transistor action similar to that of p-channel field effect transistors, while others behave as gate-voltage independent wires. At low temperatures transport is usually dominated by Coulomb blockade. In this regime the quantum eigenstates of the finite-length tubes can be studied. At higher temperatures power law behaviour is observed for the temperature and bias dependence of the conductance. This is consistent with tunneling into a one-dimensional Luttinger liquid in a nanotube. We also discuss recent developments in contacting nanotubes which should soon allow study of their intrinsic transport properties. Received: 17 May 1999 / Accepted 18 May 1999 / Published online: 4 August 1999  相似文献   

12.
袁艳红  苗润才  白晋涛  侯洵 《光子学报》2005,34(11):1651-1653
实验上测量了多壁纳米碳管的吸收光谱和光致发光谱,观察到了多壁纳米碳管的光频率上转换效应,激发波长为1064 nm,发射光谱为带状光谱,峰值波长为780 nm.由吸收光谱上观察到了纳米碳管的态密度分布的范霍夫奇点,这些奇点对应的吸收峰位置为685nm,719nm和894nm.上转换过程是纳米碳管的电子经双光子吸收,再经无辐射跃迁布居在范霍夫奇点,最后经辐射跃迁而产生荧光.  相似文献   

13.
The aim of this paper was to investigate electric field induced effects in mixtures of nematic liquid crystals (NLCs) with positive electric anisotropies (MCL 6601 Merck) with carbon nanotubes (MWCNT from Aldrich). In planar alignment, the current–electric field dependence and the current–temperature dependence were explained by assuming a Poole–Frenkel effect (i.e. a tunnelling mechanism) and good agreement with the experimental data was obtained. Within this high field range it resulted that in planar aligned NLC–CNTs mixture the conductivity decreases when the temperature was increased. In homeotropic aligned mixture, the conduction mechanism is similar to the one occurring in a semiconductor: the conductivity increases when increasing temperature. This happens because in thin liquid crystal cells there is a possibility to realize an inner contact between nanotubes and electrodes so the mixture behaves like a semiconductor.  相似文献   

14.
Multi-walled carbon nanotubes (CNTs) have been treated using 20 kHz ultrasound in combination with dilute nitric and sulfuric acids at much lower concentrations than previously reported. The measurements revealed an optimum set of sonication conditions (in this case 30 min at 12 W cm−2) exists to overcome aggregation of the nanotubes and to allow efficient dispersion in ethanol or in chitosan. Transmission electron microscopy and Raman spectroscopy suggested the removal of amorphous material and reduction of the CNT diameter as well as modifications to their defect structures. The surface oxidation was determined by FTIR spectroscopy. At longer times or higher ultrasound intensities, degradation such as nanotube shortening and additional defect generation in the graphitic network occurred and the benefits of using ultrasound decreased. The modified CNTs were used as fillers for chitosan films and gave a tenfold increase in tensile strength and integrity of the films. The methodology was combined with sonochemical generation of gold or iron oxide nanoparticles to produce a range of functional membranes for catalytic reductive hydrogenation or dye degradation under conditions that are more environmentally benign than those previously used. Our results further add to the usefulness of sonochemistry as a valuable tool in preparative materials chemistry but also illustrate the crucial importance of careful control over the experimental conditions if optimum results are to be obtained.  相似文献   

15.
We use an atomic force microscope (AFM) tip to locally probe the electronic properties of semiconducting carbon nanotube transistors. A gold-coated AFM tip serves as a voltage or current probe in three-probe measurement setup. Using the tip as a movable current probe, we investigate the scaling of the device properties with channel length. Using the tip as a voltage probe, we study the properties of the contacts. We find that Au makes an excellent contact in the p region, with no Schottky barrier. In the n region, large contact resistances were found which dominate the transport properties.  相似文献   

16.
Since nucleobase-functionalized carbon nanotubes (CNTs) are important in the biological applications; the junction of a pair of CNTs through a bridging cytosine linkage is investigated based on density functional theory (DFT) calculations. In the exact model of study, the CNTs are bound to N1 and C5 atomic sites of cytosine to make possible the CNT–cytosine–CNT model. To systematically investigate the purpose, the models of original CNT, original cytosine, and primary models of cytosine–CNT in which one CNT is only bound to N1 or C5 atomic site of cytosine are also considered. The results of dipole moments and binding energies indicated that the CNT–cytosine–CNT model is the most stable one among all three possible models cytosine-functionalized CNT. The values of energy gaps indicated that the conducting properties of primary cytosine–CNT models are not changed referring to the original CNT but better conductivity could be observed for the CNT–cytosine–CNT model. The values of evaluated quadrupole coupling constants indicated that the electronic densities of nitrogen and oxygen atoms of cytosine detect notable affects during the functionalization processes by the zigzag CNTs and the oxygen atom of CNT–cytosine–CNT model could be proposed as the most proper interacting site of cytosine among other functionalized zigzag models and also the original cytosine. However, the changes of quadrupole coupling constants for the atoms of cytosine are almost negligible during the functionalization processes by the armchair CNTs.  相似文献   

17.
曹觉先  颜晓红  肖杨  丁建文 《中国物理》2003,12(12):1440-1444
We have calculated the differential conductance of metallic carbon nanotubes by the scatter matrix methon.It is found that the differential conductance of metallic nanotube-based devices oscillates as a function of the bias voltage between the two leads and the gate voltage.Oscillation period T is directly proportional to the reciprocal of nanotube length.In addition,we found that electronic transport properties are sensitive to variation of the length of the nanotube.  相似文献   

18.
《Current Applied Physics》2015,15(10):1216-1221
The effect of radius and layer thickness on the mechanical properties of carbon nanotubes with ‘zigzag-armchair-zigzag’ superlattice structure (CNTSS) is investigated using molecular dynamics simulation method. The interactions between carbon atoms are modeled using the second-generation reactive empirical bond-order Brenner potential coupled with the Lennard-Jones potential. The results indicate that the Young's modulus of CNTSS shows a significant dependence on its radius and layer thickness. In contrast, the critical stress is insensitive to the layer thickness and radius of CNTSS. And the critical stress of CNTSS is close to that of its thicker carbon nanotubes segment. In addition, the damage modes of CNTSS depend on the connecting region due to the presence of 5–7 defects and the energy early concentrating in the junctions. The effects of the number of junctions on the mechanical properties of CNTSS are also discussed. The results indicate that the joints made in this way still have relatively high mechanical properties corresponding to that of the ideal single-walled carbon nanotube.  相似文献   

19.
甲硝唑(MNZ)的滥用对水环境造成了严重的污染.本文采用第一性原理计算的方法,研究了单壁碳纳米管(CNT)和Fe掺杂碳纳米管(Fe-CNT)对MNZ的吸附作用.分别计算了单壁CNT和Fe-CNT与MNZ的吸附结构、吸附能、电子轨道、电荷转移、态密度等.结果表明原始CNT对MNZ吸附作用较弱,而Fe-CNT与MNZ的相互作用明显增强.因此,Fe-CNT有望成为吸附水中污染物MNZ的候选材料.  相似文献   

20.
The primary goal of this project was to develop a flexible transparent conductor with 100 Ω/sq and 90% transmittance in the wavelength range of 400-700 nm on a flexible substrate. The best result achieved so far was 110 Ω/sq at 88% transmittance using purified single-walled carbon nanotubes (SWNTs) coated on a polyethylene naphthalate (PEN) substrate. The secondary goal was to simplify the overall coating procedure; we successfully reduced the process from five (prior art method) to three steps utilizing a sonication method. We also found that the use of metallic SWNTs significantly improved the conductivity and transmittance compared with the use of mixed SWNTs, i.e., unseparated SWNTs. Furthermore, a possible adhesion mechanism between SWNTs and the surface of PEN was studied; we concluded that a π-π stacking effect and a hydrophobic interaction are the major contributing factors for SWNTs to adhere to the surface of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号