首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrobenzene was regioselectively oxidized to 2-nitrophenol with oxygen in a reaction catalyzed by the H5PV2Mo10O40 polyoxometalate. The reaction was first order in oxygen and catalyst. 15N NMR showed the interaction between nitrobenzene and the polyoxometalate. Use of labeled 18O2, H218O, a competitive kinetic isotope experiment, and use of phenyl-tert-butylnitrone as a spin-trap and identification by EPR provided evidence for formation of a radical intermediate involving a selective intramolecular interaction at the ortho position due to formation of a H5PV2Mo10O40-nitrobenzene complex.  相似文献   

2.
The nitration of alkanes by using nitric acid as a nitrating agent in acetic acid was efficiently promoted by vanadium-substituted Keggin-type phosphomolybdates such as [H4PVMo11O40], [H5PV2Mo10O40], and [H6PV3Mo9O40] as catalyst precursors. A variety of alkanes including alkylbenzenes were nitrated to the corresponding nitroalkanes as major products in moderate yields with formation of oxygenated products under mild reaction conditions. The carbon--carbon bond cleavage reactions hardly proceeded. ESR, NMR, and IR spectroscopic data show that the vanadium-substituted polyoxometalate, for example, [H4PVMo11O40], decomposes to form free vanadium species and [PMo12O40](3-) Keggin anion. The reaction mechanism involving a radical-chain path is proposed. The polyoxometalates initially abstract the hydrogen of the alkane to form the alkyl radical and the reduced polyoxometalates. The reduced polyoxometalates subsequently react with nitric acid to produce the oxidized form and nitrogen dioxide. This step would be promoted mainly by the phosphomolybdates, [PMo12O40](n-), and the vanadium cations efficiently enhance the activity. The nitrogen dioxide promotes the further formation of nitrogen dioxide and an alkyl radical. The alkyl radical is trapped by nitrogen dioxide to form the corresponding nitroalkane.  相似文献   

3.
The mechanism of aerobic oxidation of aromatic and alkyl aromatic compounds using anthracene and xanthene, respectively, as a model compound was investigated using a phosphovanadomolybdate polyoxometalate, H(5)PV(2)Mo(10)O(40), as catalyst under mild, liquid-phase conditions. The polyoxometalate is a soluble analogue of insoluble mixed-metal oxides often used for high-temperature gas-phase heterogeneous oxidation which proceed by a Mars-van Krevelen mechanism. The general purpose of the present investigation was to prove that a Mars-van Krevelen mechanism is possible also in liquid-phase, homogeneous oxidation reactions. First, the oxygen transfer from H(5)PV(2)Mo(10)O(40) to the hydrocarbons was studied using various techniques to show that commonly observed liquid-phase oxidation mechanisms, autoxidation, and oxidative nucleophilic substitution were not occurring in this case. Techniques used included (a) use of (18)O-labeled molecular oxygen, polyoxometalate, and water; (b) carrying out reactions under anaerobic conditions; (c) performing the reaction with an alternative nucleophile (acetate) or under anhydrous conditions; and (d) determination of the reaction stoichiometry. All of the experiments pointed against autoxidation and oxidative nucleophilic substitution and toward a Mars-van Krevelen mechanism. Second, the mode of activation of the hydrocarbon was determined to be by electron transfer, as opposed to hydrogen atom transfer from the hydrocarbon to the polyoxometalate. Kinetic studies showed that an outer-sphere electron transfer was probable with formation of a donor-acceptor complex. Further studies enabled the isolation and observation of intermediates by ESR and NMR spectroscopy. For anthracene, the immediate result of electron transfer, that is formation of an anthracene radical cation and reduced polyoxometalate, was observed by ESR spectroscopy. The ESR spectrum, together with kinetics experiments, including kinetic isotope experiments and (1)H NMR, support a Mars-van Krevelen mechanism in which the rate-determining step is the oxygen-transfer reaction between the polyoxometalate and the intermediate radical cation. Anthraquinone is the only observable reaction product. For xanthene, the radical cation could not be observed. Instead, the initial radical cation undergoes fast additional proton and electron transfer (or hydrogen atom transfer) to yield a stable benzylic cation observable by (1)H NMR. Again, kinetics experiments support the notion of an oxygen-transfer rate-determining step between the xanthenyl cation and the polyoxometalate, with formation of xanthen-9-one as the only product. Schemes summarizing the proposed reaction mechanisms are presented.  相似文献   

4.
Alkylarenes were catalytically and selectively oxidized to the corresponding benzylic acetates and carbonyl products by nitrate salts in acetic acid in the presence of Keggin type molybdenum-based heteropolyacids, H(3+)(x)()PV(x)()Mo(12)(-)(x)()O(40) (x = 0-2). H(5)PV(2)Mo(10)O(40) was especially effective. For methylarenes there was no over-oxidation to the carboxylic acid contrary to what was observed for nitric acid as oxidant. The conversion to the aldehyde/ketone could be increased by the addition of water to the reaction mixture. As evidenced by IR and (15)N NMR spectroscopy, initially the nitrate salt reacted with H(5)PV(2)Mo(10)O(40) to yield a N(V)O(2)(+)[H(4)PV(2)Mo(10)O(40)] intermediate. In an electron-transfer reaction, the proposed N(V)O(2)(+)[H(4)PV(2)Mo(10)O(40)] complex reacts with the alkylarene substrate to yield a radical-cation-based donor-acceptor intermediate, N(IV)O(2)[H(4)PV(2)Mo(10)O(40)]-ArCH(2)R(+)(*). Concurrent proton transfer yields an alkylarene radical, ArCHR(*), and NO(2). Alternatively, it is possible that the N(V)O(2)(+)[H(4)PV(2)Mo(10)O(40)] complex abstracts a hydrogen atom from alkylarene substrate to directly yield ArCHR(*) and NO(2). The electron transfer-proton transfer and hydrogen abstraction scenarios are supported by the correlation of the reaction rate with the ionization potential and the bond dissociation energy at the benzylic positions of the alkylarene, respectively, the high kinetic isotope effect determined for substrates deuterated at the benzylic position, and the reaction order in the catalyst. Product selectivity in the oxidation of phenylcyclopropane tends to support the electron transfer-proton transfer pathway. The ArCHR(*) and NO(2) radical species undergo heterocoupling to yield a benzylic nitrite, which undergoes hydrolysis or acetolysis and subsequent reactions to yield benzylic acetates and corresponding aldehydes or ketones as final products.  相似文献   

5.
Quinones have been considered as reactive compounds present on the surface of active carbon. Thus, the co-catalytic use of quinones combined with the phosphovanadomolybdate polyoxometalate, PV2Mo10O40(5-), has been studied as an analogue of the known PV2Mo10O405-/C catalyst in oxidative dehydrogenation reactions. From the synthetic point of view both biphasic the quinone (org)-Na5PV2Mo10O40- (aq) and monophasic quinone (org)- 4Q5PV2Mo10O40-(org) [4Q = (nC4H9)4-N+] systems are effective for the selective oxidation of benzylic and allylic alcohols to their corresponding aldehydes. Kinetic measurements carried out on the model oxidative dehydrogenation of 4-methylbenzyl alcohol in the presence of p-chloranil, 4Q5PV2Mo10O40, and molecular oxygen showed that the reaction was non-elementary, although the 4-methylbenzyl alcohol oxydehydrogenation was the rate-determining step. ESR measurements showed the presence of the semiquinone of p-chloranil, probably as a complex with the polyoxometalate. This proposed complex was shown to be a more potent oxidant than p-chloranil. Thus, for the oxidation of 4-methoxytoluene the semiquinone complex was active, whereas p-chloranil alone was inactive. Beyond the importance of understanding quinone-phosphovanadomolybdate polyoxometalate-catalyzed reactions, insight gained from the formation of semiquinone active species can be applied for heterogeneous and aerobic oxidative transformations catalyzed by PV2Mo10O405- with carbon matrices as active supports.  相似文献   

6.
Benzylic, allylic, and aliphatic alcohols are oxidized to aldehydes and ketones in a reaction catalyzed by Keggin-type polyoxomolybdates, PV(x)Mo(12-x)O(40)(-(3+x)) (x = 0, 2), with DMSO as a solvent. The oxidation of benzylic alcohols is quantitative within hours and selective, whereas that of allylic alcohols is less selective. Oxidation of aliphatic alcohols is slower but selective. Further mechanistic studies revealed that, for H(3)PMo(12)O(40) as a catalyst and benzylic alcohols as substrates, the sulfoxide is in fact an oxygen donor in the reaction. Postulated reaction steps as determined from isotope-labeling experiments, kinetic isotope effects, and Hammett plots include (a) sulfoxide activation by complexation to the polyoxometalate and (b) oxygen transfer from the activated sulfoxide and elimination of water from the alcohol. The mechanism is supported by the reaction kinetics.  相似文献   

7.
The H5PV2Mo10O40 polyoxometalate in a polyethylene glycol solvent was effective for a series of aerobic oxidation reactions including oxydehydrogenation of alcohols and cyclic dienes, oxidation of sulfides and the Wacker reaction; the solvent-catalyst phase can be recovered and recycled.  相似文献   

8.
Together with a strongly oxidizing polyoxometalate, H(5)PV(2)Mo(10)O(40), Pt(II)(N-(2,6-diisopropylphenyl)pyrazin-2-ylmethanimine)Cl2 forms a combined catalyst that was active in the tandem pinacol coupling-rearrangement of aryl aldehydes to give mostly the corresponding diarylacetaldehyde in high yields using molecular hydrogen as the reducing agent.  相似文献   

9.
The history of aerobic catalytic oxidation mediated by a subclass of polyoxometalates, the phosphovanadomolybdates of the Keggin structure, [PV(x)Mo(12-x)O40](3+x)-, is described. In the earlier research it was shown that phosphovanadomolybdates catalyze oxydehydrogenation reactions through an electron-transfer oxidation of a substrate by the polyoxometalate that is then reoxidized by oxygen. These aerobic oxidations are selective and synthetically useful in various transformations, notably diene aromatization, phenol dimerization and alcohol oxidation. Oxygen transfer from the polyoxometalate to arenes and alkylarenes was also discussed as a homogeneous analog of a Mars-van Krevelen oxidation. "Second generation" catalysts include binary complexes of the polyoxometalate and a organometallic compound useful, for example, for methane oxidation and nanoparticles stabilized by polyoxometalates effective for aerobic alkene epoxidation.  相似文献   

10.
We have demonstrated that a bipyrimidinylplatinum-polyoxometalate, [Pt(Mebipym)Cl2]+[H4PV2Mo10O40]-, supported on silica is an active catalyst for the aerobic oxidation of methane to methanol in water under mild reaction conditions. Further oxidation of methanol yields acetaldehyde. The presence of the polyoxometalate is presumed to allow the facile oxidation of a Pt(II) intermediate to a Pt(IV) intermediate and to aid in the addition of methane to the Pt catalytic center.  相似文献   

11.
Dibenzothiophene (DBT) is oxidized to the corresponding sulfoxide and sulfone in an emulsion system (W/O) composed of polyoxometalate anion [C(18)H(37)N(CH(3))3](5)[PV(2)Mo(10)O(40)] as both the surfactant and catalyst, using molecular oxygen as the oxidant and aldehyde as the sacrificial agent under mild conditions.  相似文献   

12.
Oxidations of the NADH analogues 10-methyl-9,10-dihydroacridine (AcrH2) and N-benzyl 1,4-dihydronicotinamide (BNAH) by cis-[RuIV(bpy)2(py)(O)]2+ (RuIVO2+) have been studied to probe the preferences for hydrogen-atom transfer vs hydride transfer mechanisms for the C-H bond oxidation. 1H NMR spectra of completed reactions of AcrH2 and RuIVO2+, after more than approximately 20 min, reveal the predominant products to be 10-methylacridone (AcrO) and cis-[RuII(bpy)2(py)(MeCN)]2+. Over the first few seconds of the reaction, however, as monitored by stopped-flow optical spectroscopy, the 10-methylacridinium cation (AcrH+) is observed. AcrH+ is the product of net hydride removal from AcrH2, but hydride transfer cannot be the dominant pathway because AcrH+ is formed in only 40-50% yield and its subsequent oxidation to AcrO is relatively slow. Kinetic studies show that the reaction is first order in both RuIVO2+ and AcrH2, with k = (5.7 +/- 0.3) x 10(3) M(-1) s(-1) at 25 degrees C, DeltaH(double dagger) = 5.3 +/- 0.3 kcal mol(-1) and DeltaS(double dagger) = -23 +/- 1 cal mol(-1) K(-1). A large kinetic isotope effect is observed, kAcrH2/kAcrD2 = 12 +/- 1. The kinetics of this reaction are significantly affected by O2. The rate constants for the oxidations of AcrH2 and BNAH correlate well with those for a series of hydrocarbon C-H bond oxidations by RuIVO2+. The data indicate a mechanism of initial hydrogen-atom abstraction. The acridinyl radical, AcrH*, then rapidly reacts by electron transfer (to give AcrH+) or by C-O bond formation (leading to AcrO). Thermochemical analyses show that H* and H- transfer from AcrH2 to RuIVO2+ are comparably exoergic: DeltaG degrees = -10 +/- 2 kcal mol(-1) (H*) and -6 +/- 5 kcal mol(-1) (H-). That a hydrogen-atom transfer is preferred kinetically suggests that this mechanism has an equal or lower intrinsic barrier than a hydride transfer pathway.  相似文献   

13.
The primary steps of the photoredox reaction between [Mo7O24]6- and carboxylic acid electron (and proton) donors in aqueous solutions are investigated by the chemically induced dynamic electron spin polarization (CIDEP) spectroscopy. The excitation of the O-->Mo ligand-to-metal charge-transfer (LMCT) bands of [Mo7O24]6- in the presence of CH3CO2H induces the emissive electron spin polarization (ESP) of *CH2CO2 and *CH3 radicals with an accompanying formation of the one-electron reduced species [Mo7O23(OH)]6-, which is demonstrated by the triplet mechanism involving the O --> Mo LMCT triplet states. The prolonged photolysis of the solution containing [Mo7O24]6- and CH3CO2H at pH = 3.4 leads to the formation of the acetate/propionate-coordinated {Mo142} Mo-blue nanoring, [MoV28MoV(I)114O429H10(H2O)(49)(CH3)CO2 triple bond Ac5(C2H5CO2 triple bond Pr)]30- (1a) through the formation of the cis-configured dimeric dehydrative condensation to two-electron reduced Mo-blue [(Mo7O23)2]10- ({Mo14}). 1a is isolated as a [NH4]+/[Me3NH]+-mixed salt which is formulated as [NH4]27[Me3NH]3[Mo(V)28Mo(VI)114O429H10(H2O)49(CH3CO2)5(C2H5CO2)].150 +/- 10H2O (1) by results of elementary analysis, single-crystal X-ray analysis, 1H NMR, IR, and UV/Vis measurements, and manganometric redox titration. Based on the building-block sequence of for 1a, the bottom-up processes from [Mo7O24]6- to the {Mo142} ring in the coexistence of beta-[Mo8O26]4- are discussed by (i) the stabilization of the molecular curvature of {Mo14} through both the intramolecular transfer of monomolybdates and the intermolecular transfer of monomolybdates as degradation fragments of beta-[Mo8O26]4-, to yield {Mo21} and {Mo20} building blocks, (ii) the outer-ring formation resulting from seven successive two-electron-photoreductive condensations among {Mo21} and {Mo20}, and (iii) inner-ring formation resulting from eight successive dehydrative condensations between monomolybdate linkers attached to the neighboring head Mo sites.  相似文献   

14.
本文采用DFT和TD-DFT方法研究了Keggin型多酸[SiW12O40]4-光催化劈裂水产氢气机理。计算结果显示反应主要包括四个步骤:(i) 光激发,(ii) 电荷转移和生成单电子还原(OER)中间体,(iii) 生成双电子还原(TER)中间体,(iv)氢气从多酸表面解离和催化剂重生。当第一个电子从甲醇转移到多酸后,后续反应存在均为热力学上有利的放热途径,并推动第二个电子从甲醇自由基,H[SiW12O40]4-或[SiW12O40]5-转移到OER中间体H[SiW12O40]4-或[SiW12O40]5-生成TER中间体[SiW12O40]6-,H[SiW12O40]5-或H2[SiW12O40]4-,并伴随着H2产生。耦合的电子和质子转移路径在能量上最有利。甲醇和水分子的参与有利于H2产生。多酸在整个催化循环中,扮演了光敏剂、催化剂、电子的受体和给体。  相似文献   

15.
Protonated phosphovanadomolybdates of the Keggin structure, H(3+x)PV(x)Mo(12-x)O(40) where x = 0, 1, 2, and derivatives with surface defects formed by loss of constitutional water were studied using high-level DFT calculations toward determination of the most stable species and possible active forms in oxidation catalysis in both the gas phase and in polar solutions. The calculations demonstrate that protonation at bridging positions is energetically much more favorable than protonation of terminal oxygen atoms. The preferential protonation site is determined by the stability of the metal-oxygen bond rather than the negative charge on the oxygen atom. In H(3)PMo(12)O(40), maximum distances between protons at bridging oxygen atoms are energetically favored. In contrast, for H(4)PVMo(11)O(40) and H(5)PV(2)Mo(10)O(40) protons prefer nucleophilic sites adjacent to vanadium atoms. Up to three protons are bound to the nucleophilic sites around the same vanadium atom in the stable isomeric forms of H(5)PV(2)Mo(10)O(40) that result in strong destabilization of oxo-vanadium(V) bonding to the Keggin unit. Such behavior arises from the different nature of the Mo-O and V-O bonds that can be traced to the different sizes of the valence d orbitals of the metals. Coordination of two protons at the same site yields water and an oxygen defect as a result of its dissociation. The energetic cost for the formation of surface defects decreases in the order: O(t) ? O(c) ? O(e) and is lower for the sites adjacent to vanadium atoms. Vanadium atoms near defects also have a significant contribution to the LUMO. Thus, vanadium-substituted polyoxometalates with defects near and, especially, between vanadium atoms present a plausible active form of polyoxometalates in oxidation reactions.  相似文献   

16.
Iodination of arenes was carried out by reacting 1 equiv of arene substrate with 0.5 equiv of iodine under an oxygen atmosphere with H5PV2Mo10O40 as oxidation catalyst. The synthesis is an inherently waste-free method for the preparation of iodoarenes.  相似文献   

17.
Selective aerobic oxidation of benzylic alcohols and of activated aromatic hydrocarbons occurs in supercritical CO2 as reaction medium using H5PV2Mo10O40 as a quasi-heterogeneous catalyst without further additives or co-solvents; efficient recycling is possible and no metal leaching is detectable in the product stream.  相似文献   

18.
Hydrolysis of (p-nitrophenyl)phosphate (NPP), a commonly used phosphatase model substrate, was examined in molybdate solutions by means of (1)H, (31)P, and (95)Mo NMR spectroscopy and Mo K-edge Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. At 50 °C and pD 5.1 the cleavage of the phosphoester bond in NPP proceeds with a rate constant of 2.73 × 10(-5) s(-1) representing an acceleration of nearly 3 orders of magnitude as compared to the hydrolysis measured in the absence of molybdate. The pD dependence of k(obs) exhibits a bell-shaped profile, with the fastest cleavage observed in solutions where [Mo(7)O(24)](6-) is the major species in solution. Mixing of NPP and [Mo(7)O(24)](6-) resulted in formation of these two intermediate complexes that were detected by (31)P NMR spectroscopy. Complex A was characterized by a (31)P NMR resonance at -4.27 ppm and complex B was characterized by a (31)P NMR resonance at -7.42 ppm. On the basis of the previous results from diffusion ordered NMR spectroscopy, performed with the hydrolytically inactive substrate phenylphosphonate (PhP), the structure of these two complexes was deduced to be (NPP)(2)Mo(5)O(21)(4-) (complex A) and (NPP)(2)Mo(12)O(36)(H(2)O)(6)(4-) (complex B). The pH studies point out that both complexes are hydrolytically active and lead to the hydrolysis of phosphoester bond in NPP. The NMR spectra did not show evidence of any paramagnetic species, excluding the possibility of Mo(VI) reduction to Mo(V), and indicating that the cleavage of the phosphomonoester bond is purely hydrolytic. The Mo K-edge XANES region also did not show any sign of Mo(VI) to Mo(V) reduction during the hydrolytic reaction. (95)Mo NMR and Mo K-edge EXAFS spectra measured during different stages of the hydrolytic reaction showed a gradual disappearance of [Mo(7)O(24)](6-) during the hydrolytic reaction and appearance of [P(2)Mo(5)O(23)](6-), which was the final complex observed at the end of hydrolytic reaction.  相似文献   

19.
The reaction of a saddle-distorted Mo(v)-dodecaphenylporphyrin complex and a Keggin-type polyoxometalate gives a discrete and nanosized molecule, [{Mo(DPP)(O)}(2)(H(2)SiW(12)O(40))], which involves direct coordination between the Mo(v) centers and terminal oxo groups of the polyoxometalate and exhibits excellent stability in solution to show reversible multi-redox processes.  相似文献   

20.
The polyoxomolydate of the Keggin structure, PMo12O403-, catalyzes, under anaerobic conditions, oxygen transfer from sulfoxides to alkylarenes such as xanthene and diphenylmethane to yield xanthen-9-one and benzophenone, respectively. With use of 17O and 18O labeled phenylmethylsulfoxide it was shown that the sulfoxide is complexed by the polyoxometalate and the oxygen is transferred from the sulfoxide to the alkylarene. There is a good correlation between the reaction rate and the heterolytic benzylic C-H bond energy indicating a hydride transfer reaction from the alkylarene to the polyoxometalate-sulfoxide complex. In the case of triphenylmethane the resulting carbocation reacts to yield 9-phenylfluorene as the major product. The reaction kinetics supports such a reaction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号