首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Electrochemiluminescence resonance energy transfer (ECRET) between CdSe/Zns quantum dots (QDs) as the donor and cyanine dye (Cy5) molecules as the acceptor in QD-Cy5 conjugates with DNA or protein as the linker was reported. When a negative potential was applied, the excited-state CdSe/ZnS* was produced in 0.1 mol/L phosphate buffer (pH 7.4) containing 0.1 mol/L K2S2O8 and 0.1 mol/L KNO3 (PB-K2S2O8). The CdSe/ZnS* went back to the ground-state CdSe/ZnS to emit light at 590 nm or to transfer energy to proximal ground-state Cy5 molecules. The resultant excited-state Cy5 molecules relaxed to their ground state by emitting a light at 675 nm. The ECRET between QDs and Cy5 was used to evaluate interactions between DNAs and to measure conformational changes of DNAs and proteins.  相似文献   

2.
We have systematically studied the fluorescence resonance energy transfer (FRET) efficiency between the photoluminescent graphene oxide (GO) and Cy3.5 dye by controlling the donor-acceptor distance with a double stranded DNA and demonstrated that the GO serves as an acceptor rather than a donor in this FRET system.  相似文献   

3.
The efficiency of fluorescence resonance energy transfer (FRET) between two chromophores positioned at opposite ends of DNA base pair domains has been investigated. The base pair domain serves as a helical scaffold which defines both the distance between chromophores and the dihedral angle between their electronic transition dipole moments, each incremental base pair increasing the distance and stepping the dihedral angle. Fluorescence quantum yields and lifetimes have been determined for both the donor and acceptor chromophores. The experimental data are found to be in excellent accord with an oriented dipole model, rather than with the averaged dipole model conventionally assumed for FRET.  相似文献   

4.
5.
Ultrafast fluorescence resonance energy transfer (FRET) from coumarin 153 (C153) to rhodamine 6G (R6G) is studied in a neutral PEO(20)-PPO(70)-PEO(20) triblock copolymer (P123) micelle and an anionic micelle (sodium dodecyl sulfate, SDS) using a femtosecond up-conversion setup. Time constants of FRET were determined from the rise time of the acceptor emission. It is shown that a micelle increases efficiency of FRET by holding the donor and the acceptor at a close distance (intramicellar FRET) and also by tuning the donor and acceptor energies. It is demonstrated that in the P123 micelle, intramicellar FRET (i.e., donor and acceptor in same micelle) occurs in 1.2 and 24 ps. In SDS micelle, there are two ultrafast components (0.7 and 13 ps) corresponding to intramicellar FRET. The role of diffusion is found to be minor in the ultrafast components of FRET. We also detected a much longer component (1000 ps) for intramicellar FRET in the larger P123 micelle.  相似文献   

6.
We describe a two-dimensional (2D), four-color fluorescence resonance energy transfer (FRET) scheme, in which the conformational dynamics of a protein is followed by simultaneously observing the FRET signal from two different donor-acceptor pairs. For a general class of models that assume Markovian conformational dynamics, we relate the properties of the emission correlation functions to the rates of elementary kinetic steps in the model. We further use a toy folding model that treats proteins as chains with breakable cross-links to examine the relationship between the cooperativity of folding and FRET data and to establish what additional information about the folding dynamics can be gleaned from 2D, as opposed to one-dimensional FRET experiments. We finally discuss the potential advantages of the four-color FRET over the three-color FRET technique.  相似文献   

7.
The influence of a third molecule on the rate of resonance energy transfer is studied using diagrammatic perturbation theory within the framework of molecular quantum electrodynamics. Two distinct mechanisms are identified. One corresponds to direct transfer between donor and acceptor while the other involves relay of energy by the third species. Fermi Golden rule transition rates valid for all separation distances beyond wave function overlap are evaluated for these two processes as well as for the interference term between direct and indirect exchange, thereby extending previous work which was limited to the near-zone only. Short- and long-range limits are also obtained in each case. It is found that in the near-zone the indirect rate contribution exhibits inverse sixth power dependence on relative distances of emitter and absorber relative to the third body, in contrast to its far-zone counterpart, which exhibits inverse square behavior. The interference term, however, displays inverse cubic dependence on all three distance vectors at short-range and inverse behavior in the far-zone. Interestingly, for a collinear arrangement of the three molecules in the near-zone, the interference term is negative, reducing the overall rate of energy transfer. The results obtained are interpreted in terms of microscopic and macroscopic pictures of transfer occurring within a surrounding medium.  相似文献   

8.
It is shown that F?rster's expression for the electronic energy transfer rate can be recast in a form predicted for exciton motion that interacts strongly with molecular vibrations. Using a simple model based on the Kennard-Stepanov theory, F?rster's expression for the spectral overlap is shown to be of a thermally activated form, as obtained previously by multiphonon theory. In contrast, the high-frequency internal vibrations contribute a factor which results from tunneling through a potential barrier between potential curves in the configuration coordinate diagram. We thus show that resonance energy transfer is equivalent to phonon-assisted hopping of a trapped excitonic polaron.  相似文献   

9.
A quantum electrodynamical calculation is presented that focuses individually on the two quantum pathways or time orderings for resonance energy transfer. Conventional mathematical procedures necessitate summing the quantum pathway amplitudes at an early stage in the calculations. Here it is shown, by the adoption of a different strategy that allows deferral of the amplitude summation, that it is possible to elicit key information regarding the relative significance of the two pathways and their distinct distance dependences. A special function integration method delivers equations that also afford new insights into the behavior of virtual photons. It is explicitly demonstrated that both time-ordered pathways are effective at short distances, while in the far field the dissipation of virtual traits favors one pathway. Hitherto unknown features are exhibited in the oblique asymptotic behavior of the time-ordered contributions and their quantum interference. Consistency with the rate equations of resonance energy transfer is demonstrated and results are presented graphically.  相似文献   

10.
Macrocyclization of synthetic peptides by thioesterase (TE) domains excised from nonribosomal peptide synthetases (NRPS) has been limited to peptides that contain TE-specific recognition elements. To alter substrate specificity of these enzymes by evolution efforts, macrocyclization has to be detected under high-throughput conditions. Here we describe a method to selectively detect cyclic peptides by fluorescence resonance energy transfer (FRET). Using this method, picomolar detection limits were easily realized, providing novel entry for kinetic studies of catalyzed macrocyclization. Application of this method also provides an ideal tool to track TE-mediated peptide cyclization in real time. The general utility of FRET-assisted detection of cyclopeptides was demonstrated for two cyclases, namely tyrocidine (Tyc) TE and calcium-dependent antibiotic (CDA) TE. For the latter cyclase, this approach was combined with site-directed affinity labeling, opening the possibility for high-throughput enzymatic screening.  相似文献   

11.
We used lanthanide-ion doped oxide nanoparticles, Y(0.6)Eu(0.4)VO(4), as donors in fluorescent resonance energy transfer (FRET) experiments. The choice of these nanoparticles allows us to combine the advantages of the lanthanide-ion emission, in particular the long lifetime and the large Stokes shift between absorption and emission, with the detectability of the nanoparticles at the single-particle level. Using cyanine 5 (Cy5) organic molecules as acceptors, we demonstrated FRET down to the single-nanoparticle level. We showed that, due to the long donor lifetime, unambiguous and precise FRET measurements can be performed in solution even in the presence of large free acceptor concentrations. Highly efficient energy transfer was obtained for a large number of acceptor molecules per donor nanoparticle. We determined FRET efficiencies as a function of Cy5 concentration which are in good agreement with a multiple acceptor-multiple donor calculation. On the basis of the donor emission recovery due to acceptor photobleaching, we demonstrated energy transfer from single-nanoparticle donors in fluorescence microscopy experiments.  相似文献   

12.
The paper describes the development of highly sensitive particle-based fluorescence resonance energy transfer (FRET) probes that do not use molecular fluorophores as donors and acceptors. In these probes, CdSe/ZnS luminescent quantum dots (QDs) were capped with multiple histidine-containing peptides to increase their aqueous solubility while maintaining their high emission quantum yield and spectral properties. The peptide-modified QDs (QD-His) were covalently attached to carboxyl-modified polystyrene (PS) microspheres to form highly emitting PS microspheres (QD-PS). Gold nanoparticles (AuNPs) were then covalently attached to the QD-PS surface to form AuNP-QD-PS composite microspheres that were used as FRET probes. Attachment of AuNPs to QD-PS completely quenched the QD emission through FRET interactions. The emission of QD-PS was restored when the AuNPs were removed from the surface by thiol ligand displacement. The new AuNP-QD-PS FRET platform is simple to prepare and highly stable, and it opens many new possibilities for carrying out FRET assays on microparticle-based platforms and in microarrays. The versatility of these assays could be greatly increased by replacing the linkers between the QDs and AuNPs with ones that selectively respond to specific cleaving agents or enzymes.  相似文献   

13.
Fluorescence transfer across a donor-acceptor tagged rotaxane was studied and a small conformational change of the rotaxane observed using fluorescent spectroscopy and ROESY NMR.  相似文献   

14.
A novel fluorescence resonance energy transfer (FRET) system containing a two-photon absorbing dye and a nile red chromophore has been synthesized. Upon two-photon excitation by laser at 815 nm this molecule displays efficient energy transfer from the two-photon absorbing dye to the nile red moiety, with an 8-fold increase in emission compared to the model compound. Similarly, single-photon excitation of the two-photon absorbing moiety at 405 nm results in >99% energy-transfer efficiency, along with a 3.4-fold increase in nile red emission compared to direct excitation of the nile red chromophore at 540 nm. This system provides an effective way to use IR radiation to excite molecules that, by themselves, have little or no two-photon absorption.  相似文献   

15.
We demonstrate the use of luminescent quantum dots (QDs) conjugated to dye-labeled protein acceptors for nonradiative energy transfer in a multiplexed format. Two configurations were explored: (1) a single color QD interacting with multiple distinct acceptors and (2) multiple donor populations interacting with one type of acceptor. In both cases, we showed that simultaneous energy transfer between donors and proximal acceptors can be measured. However, data analysis was simpler for the configuration where multiple QD donors are used in conjunction with one acceptor. Steady-state fluorescence results were corroborated by time-resolved measurements where selective shortening of QD lifetime was measured only for populations that were selectively engaged in nonradiative energy transfer.  相似文献   

16.
Single-molecule quantum-dot fluorescence resonance energy transfer.   总被引:4,自引:0,他引:4  
Colloidal semiconductor quantum dots are promising for single-molecule biological imaging due to their outstanding brightness and photostability. As a proof of concept for single-molecule fluorescence resonance energy transfer (FRET) applications, we measured FRET between a single quantum dot and a single organic fluorophore Cy5. DNA Holliday junction dynamics measured with the quantum dot/Cy5 pair are identical to those obtained with the conventional Cy3/Cy5 pair, that is, conformational changes of individual molecules can be observed by using the quantum dot as the donor.  相似文献   

17.
Conjugated polydiacetylene (PDA) possessing stimuli-responsive properties has been intensively investigated for developing efficient sensors. We report here fluorescence resonance energy transfer (FRET) in liposomes synthesized using different molar ratios of dansyl-tagged diacetylene and diacetylene-carboxylic acid monomers. Photopolymerization of diacetylene resulted in cross-linked PDA liposomes. We used steady-state electronic absorption, emission, and fluorescence anisotropy (FA) analysis to characterize the thermal-induced FRET between dansyl fluorophores (donor) and PDA (acceptor). We found that the monomer ratio of acceptor to donor ( R ad) and length of linkers (functional part that connects dansyl fluorophores to the diacetylene group in the monomer) strongly affected FRET. For R ad = 10 000, the acceptor emission intensity was amplified by more than 18 times when the liposome solution was heated from 298 to 338 K. A decrease in R ad resulted in diminished acceptor emission amplification. This was primarily attributed to lower FRET efficiency between donors and acceptors and a higher background signal. We also found that the FRET amplification of PDA emissions after heating the solution was much higher when dansyl was linked to diacetylene through longer and flexible linkers than through shorter linkers. We attributed this to insertion of dansyl in the bilayer of the liposomes, which led to an increased dansyl quantum yield and a higher interaction of multiple acceptors with limited available donors. This was not the case for shorter and more rigid linkers where PDA amplification was much smaller. The present studies aim at enhancing our understanding of FRET between fluorophores and PDA-based conjugated liposomes. Furthermore, receptor tagged onto PDA liposomes can interact with ligands present on proteins, enzymes, and cells, which will produce emission sensing signal. Therefore, using the present approach, there exist opportunities for designing FRET-based highly sensitive and selective chemical and biochemical sensors.  相似文献   

18.
19.
We present the results of molecular modeling of dye-labeled, double-stranded DNA. The structural information obtained from the simulations are used as input to an analysis of energy transfer in this system. The simulations reveal the nature of the interaction between a pair of fluorophores and DNA. The donor, tetramethylrhodamine, TMR, attached to the 5′-end of DNA with a six-carbon tether, interacts primarily with DNA's minor groove, but occasionally stacks against the DNA base pairs. The acceptor, Cy5, attached to the opposite strand at positions n (n = 7, 12, 14, 16, 19, 24, 27), binds in the major groove in two distinct locations on the upper and lower part of the groove. We analyzed in detail the dye-to-dye distances, dipole orientation factors and fluorescence resonance energy transfer (FRET) rates. Tests of the validity of the Förster model were conducted using the transition density cube (TDC) method, which provides the exact Coulombic interaction within a certain model chemistry. Our studies show that the use of long tethers does not guarantee rotational freedom of the dyes, as intended in the experiments. Instead, the tethers allow Cy5 to bind in two different geometries, which causes a large uncertainty in the dye-to-dye distances. Our results also show significant fluctuation in the orientation factor, κ2, which, together with uncertainty in dye-to-dye distances, cause considerable uncertainty in interpreting FRET measurements. We suggest that molecular modeling, combined with the TDC method, provides a useful tool in designing and interpreting FRET experiments.  相似文献   

20.
A method has been developed for the quantitative determination of fluorescence resonance energy transfer (FRET) based on the modulation of donor fluorescence upon the reversible photoconversion of a photochromic acceptor. A model system was devised, consisting of Lucifer Yellow cadaverine (LYC, donor) conjugated to the photochromic molecule, 6-nitroBIPS (1′,3′-dihydro-1′-(2-carboxyethyl)-3′,3′-dimethyl-6-nitrospiro[2H-1-benzopyran-2,2′-(2H)-indoline]). Near-ultraviolet irradiation catalyzes the conversion of the colorless spiropyran (SP) to the colored merocyanine (MC) form of 6-nitroBIPS. Only the MC form absorbs at the emission wavelengths of the donor, thereby potentiating FRET, as demonstrated by quenching of the donor. Subsequent irradiation in the visible MC absorption band reverts 6-nitroBIPS to the SP form and FRET is inactivated. The acceptor exhibited high photostability under repeated cycles of alternating UV–Vis irradiation. In this model system, the intramolecular FRET efficiency was close to 100%. The observed maximal donor quenching of 34±3% was indicative of an equilibrium determined by the high quantum efficiency of forward conversion (SP→MC) induced by near-UV irradiation and a low but finite quantum efficiency of the back reaction resulting from excitation of the MC form directly as well as indirectly (by FRET via the donor). A quantitative formalism for the photokinetic scheme was developed. Photochromic FRET (pcFRET) permits repeated, quantitative, and non-destructive FRET determinations for arbitrary relative concentrations of donor and acceptor and thus offers great potential for monitoring dynamic molecular interactions in living cells over extended observation times by fluorescence microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号