首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hammerhead ribozyme is a small RNA motif that catalyzes the cleavage and ligation of RNA. The well-studied minimal hammerhead motif is inactive under physiological conditions and requires high Mg(2+) concentrations for efficient cleavage. In contrast, natural hammerheads are active under physiological conditions and contain motifs outside the catalytic core that lower the requirement for Mg(2+). Single-turnover kinetics were used here to characterize the Mg(2+) and pH dependence for cleavage of a trans-cleaving construct of the Schistosoma mansoni natural hammerhead ribozyme. Compared to the minimal hammerhead motif, the natural Schistosoma ribozyme requires 100-fold less Mg(2+) to achieve a cleavage rate of 1 min(-1). The improved catalysis results from tertiary interactions between loops in stems I and II and likely arises from increasing the population of the active conformation. Under optimum pH and Mg(2+) conditions this ribozyme cleaves at over 870 min(-1) at 25 degrees C, further demonstrating the impressive catalytic power of this ribozyme.  相似文献   

2.
The hepatitis delta virus (HDV) ribozyme uses a cytosine to facilitate general acid-base catalysis. Biochemical studies suggest that C75 has a pKa perturbed to near neutrality. To measure this pKa directly, Raman spectra were recorded on single ribozyme crystals using a Raman microscope. A spectral feature arising from a single neutral cytosine was identified at 1528 cm(-1). At low pH, this mode was replaced with a new spectral feature. Monitoring these features as a function of pH revealed pKa values for the cytosine that couple anticooperatively with Mg2+ binding, with values of 6.15 and 6.40 in the presence of 20 and 2 mM Mg2+, respectively. These pKa values agree well with those obtained from ribozyme activity experiments in solution. To correlate the observed pKa with a specific nucleotide, crystals of C75U, which is catalytically inactive, were examined. The Raman difference spectra show that this mutation does not affect the conformation of the ribozyme. However, crystals of C75U did not produce a signal from a protonatable cytosine, providing strong evidence that protonation of C75 is being monitored in the wild-type ribozyme. These studies provide the first direct physical measurement of a pKa near neutrality for a catalytic residue in a ribozyme and show that ribozymes, like their protein enzyme counterparts, can optimize the pKa of their side chains for proton transfer.  相似文献   

3.
Catalytic RNA molecules (ribozymes) have often been used for the testing of interactions of antibiotics with ribonucleic acids. We showed that the impact of capreomycin and hygromycin B on delta ribozyme catalysis might change dramatically, from stimulation to inhibition, depending on conditions. In order to evaluate possible mechanisms of modulation of the ribozyme catalytic activity we used our earlier data on species distribution for protonated forms of capreomycin and hygromycin B and their complexes with Cu(2+) ions at different pH values. We proposed that, upon inhibition, the protonated amino group of capreomycin was located in the ribozyme catalytic cleft interfering with binding catalytic Mg(2+). Such a mechanism was also supported by the results of ribozyme inhibition with capreomycin complexed with Cu(2+). The effects of stimulation of the delta ribozyme activity by capreomycin and hygromycin B were less pronounced than inhibition. Possibly, the amino functions of these antibiotics might be involved in a general acid-base catalysis performed by the ribozyme, acting as proton acceptors/donors.  相似文献   

4.
A recent crystal structure of the precleaved HDV ribozyme along with biochemical data support a mechanism for phosphodiester bond self-cleavage in which C75 acts as a general acid and bound Mg(2+) ion acts as a Lewis acid. Herein this precleaved crystal structure is used as the basis for quantum mechanical/molecular mechanical calculations. These calculations indicate that the self-cleavage reaction is concerted with a phosphorane-like transition state when a divalent ion, Mg(2+) or Ca(2+), is bound at the catalytic site but is sequential with a phosphorane intermediate when a monovalent ion, such as Na(+), is at this site. Electrostatic potential calculations suggest that the divalent metal ion at the catalytic site lowers the pK(a) of C75, leading to the concerted mechanism in which the proton is partially transferred to the leaving group in the phosphorane-like transition state. These observations are consistent with experimental data, including pK(a) measurements, reaction kinetics, and proton inventories with divalent and monovalent ions.  相似文献   

5.
Hammerhead ribozymes have been considered to be metalloenzymes. However, this proposal was recently questioned by the finding that the reaction proceeds in the presence of high concentrations of monovalent ions such as NH(4)(+) ions and in the absence of any divalent metal ions. Our present analysis based on solvent isotope effects indicates that (1) a proton transfer(s) occurs only in the NH(4)(+)-mediated reaction but not in metal-ion-mediated reactions such as Mg(2+)- and Li(+)-mediated reactions, (2) the catalyst that stabilizes the 5' leaving group in the NH(4)(+)-mediated reaction is different from that in the metal-ion-mediated HH ribozyme reactions, (3) an NH(4)(+) ion seems to act as a general acid catalyst, and (4) a nucleobase alone should not be the catalyst.  相似文献   

6.
Simple procedures and characterization of a series of well-defined precursors are described for preparation of a unique microenvironment in nanoreactors, reverse micelles. The Na(+), K(+), Rb(+), Cs(+), and Mg(2+) surfactants were prepared using liquid-liquid ion exchange using chloride and nitrate salts. The surfactants were characterized using (1)H NMR spectroscopy and a variety of other techniques. (1)H NMR spectroscopy was found to be a sensitive probe for characterization of the size of the nanoreactor as well as its water content. (1)H NMR spectra can be used for detailed characterization of reactions in confined environments when counterion effects are likely to be important. (1)H NMR spectroscopy revealed two separate peaks corresponding to water in Mg(AOT)2 samples; one peak arises from water coordinated to the Mg(2+) ion while the other peak arises from bulk water. The two water signals arise directly from the slow exchange of the water coordinated to Mg(2+) in these microemulsions with water in the water pool, and provide an opportunity to study hydration of Mg(2+). This work thus extends the potential use of MAOT microemulsions for applications such as in green chemistry.  相似文献   

7.
Density functional theory methods have been used to investigate the hepatitis delta virus (HDV) ribozyme and its catalyzed phosphodiester cleavage. In particular, the effects of the environment's polarity and/or specific hydrogen-bond interactions on the proton affinity of the active site cytosine's N3 ring center have been considered. In addition, the basicities of possible hydrated Mg2+ ion species were also examined. The mechanism previously proposed for the HDV ribozyme in which the active site cytosine (C75) is protonated and thus acts as an acid while the Mg2+ species acts as the complementary base was then investigated. The possible role of tautomerization of C75 is also discussed.  相似文献   

8.
The methanolyses of a series of O,O-diethyl O-aryl phosphates (2,5) and O,O-diethyl S-aryl phosphorothioates (6) promoted by methoxide and two metal ion systems, (La3+)2(-OCH3)2 and 4:Zn2+:-OCH3 (4 = 1,5,9-triazacyclododecane) has been studied in methanol at 25 degrees C. Br?nsted plots of the logk2 values vs. pKa for the phenol leaving groups give beta(lg) values of -0.70, -1.43 and -1.12 for the methanolysis of the phosphates and -0.63, -0.87 and -0.74 for the methanolysis of the phosphorothioates promoted by the methoxide, La3+ and Zn2+ systems respectively. The kinetic data for the metal-catalyzed reactions are analyzed in terms of a common mechanism where there is extensive cleavage of the P-XAr bond in the rate-limiting transition state. The relevance of these findings to the mechanism of action of the phosphotriesterase enzyme is discussed.  相似文献   

9.
The main question addressed in this paper is whether the nucleophilic substitution of the p-nitrophenoxy group in (CO)5Cr=C(OC6H4-4-NO2)Ph (1-NO2) by a series of substituted phenoxide ions is concerted or stepwise. Rate constants, kArO, for these substitution reactions were determined in 50% MeCN-50% water (v/v) at 25 degrees C. A Br?nsted plot of log kArO versus pKa(ArOH) s consistent with a stepwise mechanism. This contrasts with reactions of aryl oxide ions with p-nitrophenyl acetate and with similar acyl transfers which are concerted. The reason for the contrast is that the tetrahedral intermediates formed in the reactions of 1-NO2 are much more stable than those in acyl transfers and the intrinsic barriers to their decomposition are higher than for the ester reactions. The points on the Br?nsted plots for which pKa(ArOH) > or = pKa(PNP) define a straight line with beta(nuc) = -0.39, suggesting that bond formation has made very little progress at the transition state and that partial desolvation of the nucleophile is part of the activation process. The hydrolysis of 1-NO2 and of the unsubstituted analogue (1-H) has also been studied over a wide pH range, providing rate constants for nucleophilic attack by hydroxide ion (kOH), by water (kH2O), and by general base-catalyzed reaction with water (kB). Furthermore, kH2O values were obtained for the hydrolysis of (CO)5Cr=C(OC6H4X)Ph (1-X) as a byproduct of the reactions of 1-NO2 with aryl oxide ions. Structure-reactivity relationships for these reactions are discussed in terms of inductive, pi-donor, and steric effects.  相似文献   

10.
A computational study was performed on the Mg(2+)-free conformations of the small guanine nucleotide-binding proteins (GNBPs): Ras, Rho, Rab, Arf, and Ran, which were complexed with GDP. Molecular dynamics (MD) simulation was executed for each complex for the duration of 3.0 ns to investigate the effects of Mg(2+) ions on the GNBPs' structure. The results indicated that all Mg(2+)-free GNBPs formed a groove between the switch region and the nucleotide-binding site. In some GNBP families, the release of Mg(2+) was reported to play an important role in binding the guanine nucleotide-exchanging factor (GEF) promoting the GDP/GTP exchange reaction. Interestingly, the grooves, which appeared in the MD simulations, were similar to the grooves experimentally observed in the GNBP-GEF complex. We also calculated the Mg(2+)-bound GNBPs to compare with the Mg(2+)-free forms. No groove was observed in the Mg(2+)-bound GNBPs. These results demonstrated a regulatory role of Mg(2+) ion to prepare a template for the GEF binding. Moreover, the results suggested that the release of Mg(2+) ion lead to the GEF-GNBP binding.  相似文献   

11.
The keto-enol tautomerism of 2-nitrocyclohexanone (2-NCH) was studied in aqueous solution under different experimental conditions. Ketonization rate constants were measured spectrophotometrically at 25 degrees C at an ionic strength of 0.4 mol dm-3 (NaCl) in diluted hydrochloric acid, in diluted sodium hydroxide, and in several buffers by using NaHSO3 as the scavenger of the keto form. A value of pK(a)(EH) = 4.78 for the enol form was obtained from the rate-pH profile of the reaction. A value of pK(a)(KH) = 5.97 for the keto form was directly obtained from the UV-vis spectra of 2-NCH recorded at different pHs. The equilibrium constant for the keto-enol tautomerism, pK(T) = -log([enol]/[ketone]) = 1.19, was obtained by combining the two pKa values (pK(T) = pK(a)(KH) - pK(a)(EH)). A comparison of these results with the corresponding values (Keefe, J. R.; Kresge, A. J. In The Chemistry of Enols; Rappoport, Z., Ed.; Wiley & Sons: New York, 1990; pp 399-480) for cyclohexanone shows the dramatic effects of an alpha-nitro substituent on the keto-enol acidities and the tautomerization constant of alicyclic ketones. Rates and equilibria were discussed in the light of the Br?nsted equation, the principle of nonperfect synchronization, and the Marcus theory. It turns out that, on passing from nitroalkanes to nitroketones, the resonance contribution to pKa and deprotonation rate decreases, being overwhelmed by steric and inductive effects.  相似文献   

12.
Palladium(II)-catalyzed aerobic oxidative amination of styrene with oxazolidinone proceeds with catalyst-controlled regioselectivity: (CH3CN)2PdCl2 (1) and (Et3N)2PdCl2 (2) catalyze formation of the anti-Markovnikov and Markovnikov enecarbamate products, 3 and 4, respectively. Kinetic studies and deuterium kinetic isotope effects demonstrate that these two reactions possess different rate-limiting steps, and the data indicate that the product regiochemistry arises from the presence or absence of an effective Br?nsted base in the reaction. In the presence of a Br?nsted base such as triethylamine or acetate, the kinetically preferred Markovnikov aminopalladation adduct of styrene is trapped via rapid deprotonation of a zwitterionic intermediate and leads to formation of 4. In the absence of an effective Br?nsted base, however, slow deprotonation of this adduct enables aminopalladation to be reversible, and product formation proceeds through the thermodynamically preferred anti-Markovnikov aminopalladation adduct to yield 3.  相似文献   

13.
The hepatitis delta virus (HDV) ribozyme is an RNA motif embedded in human pathogenic HDV RNA. Previous experimental studies have established that the active-site nucleotide C75 is essential for self-cleavage of the ribozyme, although its exact catalytic role in the process remains debated. Structural data from X-ray crystallography generally indicate that C75 acts as the general base that initiates catalysis by deprotonating the 2'-OH nucleophile at the cleavage site, while a hydrated magnesium ion likely protonates the 5'-oxygen leaving group. In contrast, some mechanistic studies support the role of C75 acting as general acid and thus being protonated before the reaction. We report combined quantum chemical/molecular mechanical calculations for the C75 general base pathway, utilizing the available structural data for the wild type HDV genomic ribozyme as a starting point. Several starting configurations differing in magnesium ion placement were considered and both one-dimensional and two-dimensional potential energy surface scans were used to explore plausible reaction paths. Our calculations show that C75 is readily capable of acting as the general base, in concert with the hydrated magnesium ion as the general acid. We identify a most likely position for the magnesium ion, which also suggests it acts as a Lewis acid. The calculated energy barrier of the proposed mechanism, approximately 20 kcal/mol, would lower the reaction barrier by approximately 15 kcal/mol compared with the uncatalyzed reaction and is in good agreement with experimental data.  相似文献   

14.
We here show that the pKa (error limit: 0.01 to 0.03 pKa unit) of a nucleobase in a nucleotide can be modulated by the chemical nature of the 2'-substituent at the sugar moiety. This has been evidenced by the measurement of nucleobase pKa in 47 different model nucleoside 3',5'-bis- and 3'-mono-ethylphosphates. The fact that the electronic character of each of the 2'-substituents (Fig. 1) alters the chemical shift of the H2' sugar proton, and also alters the pKa of the nucleobase in the nucleotides has been evidenced by a correlation plot of pKa of N3 of pyrimidine (T/C/U) or pKa of N7 of 9-guaninyl with the corresponding deltaH2' chemical shifts at the neutral pH, which shows linear correlation with high Pearson's correlation coefficients (R = 0.85-0.97). That this modulation of the pKa of the nucleobase by a 2'-substituent is a through-bond as well as through-space effect has been proven by ab initio determined pKa estimation. Interestingly, experimental pKas of nucleobases from NMR titration and the calculated pKas (by ab initio calculations utilizing closed shell HF 6-31G** basis set) are linearly correlated with R = 0.98. It has also been observed that the difference of ground and protonated/de-protonated HOMO orbital energies (DeltaHOMO, a.u.) for the nucleobases (A/G/C/T/U) are well correlated with their pK(a)s in different 2'-substituted 3',5'-bis-ethylphosphate analogs suggesting that only the orbital energy of HOMO can be successfully used to predict the modulation of the chemical reactivity of the nucleobase by the 2'-substituent. It has also been demonstrated that pKa values of nucleobases in 3',5'-bis-ethylphosphates (Table 1) are well correlated with the change in dipole moment for the respective nucleobases after protonation or de-protonation. This work thus unambiguously shows that alteration of the thermodynamic stability (Tm) of the donor-acceptor complexes [ref. 20], as found with various 2'-modified duplexes in the antisense, siRNA or in triplexes by many workers in the field, is a result of alteration of the pseudoaromatic character of the nucleobases engineered by alteration of the chemical nature of the 2'-substitution.  相似文献   

15.
The role of divalent cations in the mechanism of pyrophosphate-activated, template-directed oligoribonucleotide ligation has been investigated. The dependence of the reaction rate on Mg2+ concentration suggests a kinetic scheme in which a Mg2+ ion must bind before ligation can proceed. Mn2+, Ca2+, Sr2+, and Ba2+ can also catalyze the reaction. Although Pb2+ and Zn2+ do not catalyze the reaction in the absence of other divalent ions, they significantly modulate the reaction rate when added in the presence of Mg2+, with Pb2+ stimulating the reaction (up to 65-fold) and Zn2+ inhibiting the reaction. The logarithm of the ligation rate increases linearly, with slope of 0.95, as a function of pH, indicating that the reaction involves a single critical deprotonation step. The ligation rates observed with the different divalent metal ion catalysts (Mn2+ > Mg2+ > Ca2+ > Sr2+ = Ba2+) vary inversely with the pKa values of their bound water molecules. The pH profile and these relative ligation rates suggest a mechanism in which a metal-bound hydroxide ion located near the ligation junction promotes catalysis, most likely by deprotonation of the hydroxl nucleophile. The effects of changing either the leaving group or the attacking hydroxyl, together with the large delta S(++) value for oligonucleotide ligation (about -20 eu), are consistent with an associative transition state.  相似文献   

16.
This article reports nonlinear optical measurements that quantify, for the first time directly and without labels, how many Mg(2+) cations are bound to DNA 21-mers covalently linked to fused silica/water interfaces maintained at pH 7 and 10 mM NaCl, and what the thermodynamics are of these interactions. The overall interaction of Mg(2+) with adenine, thymine, guanine, and cytosine is found to involve -10.0 ± 0.3, -11.2 ± 0.3, -14.0 ± 0.4, and -14.9 ± 0.4 kJ/mol, and nonspecific interactions with the phosphate and sugar backbone are found to contribute -21.0 ± 0.6 kJ/mol for each Mg(2+) ion bound. The specific and nonspecific contributions to the interaction energy of Mg(2+) with oligonucleotide single strands is found to be additive, which suggests that within the uncertainty of these surface-specific experiments, the Mg(2+) ions are evenly distributed over the oligomers and not isolated to the most strongly binding nucleobase. The nucleobases adenine and thymine are found to bind only three Mg(2+) ions per 21-mer oligonucleotide, while the bases cytosine and guanine are found to bind eleven Mg(2+) ions per 21-mer oligonucleotide.  相似文献   

17.
The hammerhead ribozyme reaction is more complex than might have been expected, perhaps because of the flexibility of RNA, which would have enhanced the potential of RNA during evolution of and in the RNA world. Divalent Mg(2+) ions can increase the rate of the ribozyme-catalyzed reaction by approximately 10(9)-fold as compared to the background rate under standard conditions. However, the role of Mg(2+) ions is controversial since the reaction can proceed in the presence of high concentrations of monovalent ions, such as Li(+), Na(+), and NH(4)(+) ions, in the absence of divalent ions. We thus carried out ribozyme reactions under various conditions, and we obtained parameters that explain the experimental data. On the basis of the analysis, we propose a new pathway in the hammerhead ribozyme reaction in which divalent metal ions and monovalent ions act cooperatively.  相似文献   

18.
The methionine aminopeptidase (MetAP) catalyzes the removal of amino terminal methionine from newly synthesized polypeptide. MetAP from Mycobacterium smegmatis mc(2) 155 was purified from the culture lysate in four sequential steps to obtain a final purification fold of 22. The purified enzyme exhibited a molecular weight of approximately 37 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Activity staining was performed to detect the methionine aminopeptidase activity on native polyacrylamide gel. The enzyme was characterized biochemically, using L-methionine p-nitroanilide as substrate. The enzyme was found to have a temperature and pH optimum of 50 degrees C and 8.5, respectively, and was found to be stable at 50 degrees C with half-life more than 8 h. The enzyme activity was enhanced by Mg(2+) and Co(2+) and was inhibited by Fe(2+) and Cu(2+). The enzyme activity inhibited by EDTA is restored in presence of Mg(2+) suggesting the possible role of Mg(2+) as metal cofactor of the enzyme in vitro.  相似文献   

19.
Rate and equilibrium constants were determined for protonation of ring-substituted -methoxystyrenes by hydronium ion and by carboxylic acids to form the corresponding ring-substituted alpha-methyl alpha-methoxybenzyl carbocations at 25 degrees C and I = 1.0 (KCl). The thermodynamic barrier to carbocation formation increases by 14.5 kcal/mol as the phenyl ring substituent(s) is changed from 4-MeO- to 3,5-di-NO2-, and as the carboxylic acid is changed from dichloroacetic to acetic acid. The Br?nsted coefficient alpha for protonation by carboxylic acids increases from 0.67 to 0.77 over this range of phenyl ring substituents, and the Br?nsted coefficient beta for proton transfer increases from 0.63 to 0.69 as the carboxylic acid is changed from dichloroacetic to acetic acid. The change in these Br?nsted coefficients with changing reaction driving force, (inverted theta)alpha/ (inverted theta) deltaG(av) degrees=(inverted theta)beta/(inverted theta)delta G(av) degrees= 1/8lambda = 0.011, is used to calculate a Marcus intrinsic reaction barrier of lambda= 11 kcal/mol which is close to the barrier of 13 kcal/mol for thermoneutral proton transfer between this series of acids and bases. The value of alpha= 0.66 for thermoneutral proton transfer is greater than alpha= 0.50 required by a reaction that follows the Marcus equation. This elevated value of beta may be due to an asymmetry in the reaction coordinate that arises from the difference in the intrinsic barriers for proton transfer at the oxygen acid reactant and resonance-stabilized carbon acid product.  相似文献   

20.
Photoexcitation of a zinc phthalocyanine-perylenediimide (ZnPc-PDI) dyad and a bis(zinc phthalocyanine)-perylenediimide [(ZnPc) 2-PDI] triad results in formation of the triplet excited state of the PDI moiety without the fluorescence emission, whereas addition of Mg (2+) ions to the dyad and triad results in formation of long-lived charge-separated (CS) states (ZnPc (*+)-PDI (*-)/Mg (2+) and (ZnPc) 2 (*+)-PDI (*-)/Mg (2+)) in which PDI (*-) forms a complex with Mg (2+). Formation of the CS states in the presence of Mg (2+) was confirmed by appearance of the absorption bands due to ZnPc (*+) and PDI (*-)/Mg (2+) complex in the time-resolved transient absorption spectra of the dyad and triad. The one-electron reduction potential ( E red) of the PDI moiety in the presence of a metal ion is shifted to a positive direction due to the binding of Mg (2+) to PDI (*-), whereas the one-electron oxidation potential of the ZnPc moiety remains the same. The binding of Mg (2+) to PDI (*-) was confirmed by the ESR spectrum, which is different from that of PDI (*-) without Mg (2+). The energy of the CS state (ZnPc (*+)-PDI (*-)/Mg (2+)) is determined to be 0.79 eV, which becomes lower that of the triplet excited state (ZnPc- (3)PDI*: 1.07 eV). This is the reason why the long-lived CS states were attained in the presence of Mg (2+) instead of the triplet excited state of the PDI moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号