首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Parallel excitation using multiple transmit channels has emerged as an effective method to shorten multidimensional spatially selective radiofrequency (RF) pulses, which have a number of important applications, including B1 field inhomogeneity correction in high-field MRI. The specific absorption rate (SAR) is a primary concern in high-field MRI, where wavelength effects can lead to local peaks in SAR. In parallel excitation, the subjects are exposed to RF pulses from multiple coils, which makes the SAR problem more complex to analyze, yet potentially enables greater freedom in designing RF pulses with lower SAR. Parallel-excitation techniques typically employ either Cartesian or constant-density (CD) spiral trajectories. In this article, variable-density (VD) spiral trajectories are explored as a means for SAR reduction in parallel-excitation pulse design. Numerical simulations were conducted to study the effects of CD and VD spirals on parallel excitation. Specifically, the electromagnetic fields of a four-channel transmit head coil with a three-dimensional head model at 4.7 T were simulated using a finite-difference time domain method. The parallel RF pulses were designed and the resulting excitation patterns were generated using a Bloch simulator. The SAR distributions due to CD and VD spirals were evaluated quantitatively. The simulation results show that, for the same pulse duration, parallel excitation with VD spirals can achieve a lower SAR compared to CD spirals for parallel excitation. VD spirals also resulted in reduced artifact power in the excitation patterns. This gain came with slight, but noticeable, degrading of the spatial resolution of the resulting excitation patterns.  相似文献   

2.
In this study, a Genetic Algorithm (GA) is introduced to optimize the multidimensional spatial selective RF pulse to reduce the passband and stopband errors of excitation profile while limiting the transition width. This method is also used to diminish the nonlinearity effect of the Bloch equation for large tip angle excitation pulse design. The RF pulse is first designed by the k-space method and then coded into float strings to form an initial population. GA operators are then applied to this population to perform evolution, which is an optimization process. In this process, an evaluation function defined as the sum of the reciprocal of passband and stopband errors is used to assess the fitness value of each individual, so as to find the best individual in current generation. It is possible to optimize the RF pulse after a number of iterations. Simulation results of the Bloch equation show that in a 90 degrees excitation pulse design, compared with the k-space method, a GA-optimized RF pulse can reduce the passband and stopband error by 12% and 3%, respectively, while maintaining the transition width within 2 cm (about 12% of the whole 32 cm FOV). In a 180 degrees inversion pulse design, the passband error can be reduced by 43%, while the transition is also kept at 2 cm in a whole 32 cm FOV.  相似文献   

3.
PurposeTo investigate velocity encoded and velocity compensated variants of multi-spoke RF pulses that can be used for flip-angle homogenization at ultra-high fields (UHF). Attention is paid to the velocity encoding for each individual spoke pulse and to displacement artifacts that arise in Fourier transform imaging in the presence of flow.Theory and methodsA gradient waveform design for multi-spoke excitation providing an algorithm for minimal TE was proposed that allows two different encodings. Such schemes were compared to an encoding approach that applies an established scheme to multi-spoke excitations. The impact on image quality and quantitative velocity maps was evaluated in phantoms using single- and two-spoke excitations. Additional validation measurements were obtained in-vivo at 7 T.ResultsPhantom experiments showed that keeping the first gradient moment constant for all k-space lines eliminates any displacements in phase-encoding and slice-selection direction for all spoke pulses but leads to artifacts for non-zero velocity components along readout direction. Introducing variable but well-defined first gradient moments in the phase-encoding direction creates displacements along the velocity vector and thus minimizes velocity-induced geometrical distortions. Phase-resolved mean volume flow in the ascending and descending aorta obtained from two-spoke excitation showed excellent agreement with single-spoke excitation over the cardiac cycle (mean difference 0.8 ± 16.2 ml/s).ConclusionsThe use of single- and multi-spoke RF pulses for flow quantification at 7 T with controlled displacement artifacts has been successfully demonstrated. The presented techniques form the basis for correct velocity quantification and compensation not only for conventional but also for multi-spoke RF pulses allowing in-plane B1+ homogenization using parallel transmission at UHF.  相似文献   

4.
A new technique is presented for generating myocardial tagging using the signal intensity minima of the transition zones between the bands of 0 degrees and 360 degrees rotations, induced by a tandem of two adiabatic delays alternating with nutations for tailored excitation (DANTE) inversion sequences. With this approach, the underlying matrix corresponds to magnetization that has experienced 0 degrees or 360 degrees rotations. The DANTE sequences were implemented from adiabatic parent pulses for insensitivity of the underlying matrix to B(1) inhomogeneity. The performance of the proposed tagging technique is demonstrated theoretically with computer simulations and experimentally on phantom and on the canine heart, using a surface coil for both RF transmission and signal reception. The simulations and the experimental data demonstrated uniform grid contrast and sharp tagging profiles over a twofold variation of the B(1) field magnitude.  相似文献   

5.
A new method of non-uniform image correction is proposed. Image non-uniformity is originated from the spatial distribution of RF transmission and reception fields, represented as B(1)(+) and B(1)(-), respectively. In our method, B(1)(+) mapping was performed invivo by a phase method. In B(1)(-) mapping, images with multiple TEs were acquired with a multi-echo adiabatic spin echo (MASE) sequence which enables homogeneous excitation. By T(2) fitting of these images an M(0) map (M(0)(MASE)) was obtained, in which signal intensity was expressed as the product of B(1)(-) and M?(1-e?(TR/T1)) . The ratio of this M(0)(MASE) map to the B(1)(+) map showed a similar spatial pattern in different human brains. These ratios of M(0)(MASE) to B(1)(+) in 24 subjects were averaged and then fitted with a spatially polynomial function to obtain a ratio map of B(1)(-)/B(1)(+)(α). Uniform image was achieved in spin echo (SE), MASE and inversion recovery turboFLASH (IRTF) images using measured B(1)(+) and calculated B(1)(-) by αB(1)(+). Water fractions in gray and white matters obtained from the M(0) images corrected by this method were in good agreement with previously reported values. From these experimental results, the proposed method of non-uniformity correction is validated at 4.7 T imaging.  相似文献   

6.
Deterioration of radiofrequency (RF) inhomogeneity with increasing static magnetic field in magnetic resonance imaging (MRI) is one of the fundamental challenges preventing their clinical rendition and posing safety hazards. Variation in RF coil designs could help redistribute RF energy absorption over the imaged object. This work is intended to determine experimentally the difference in RF heating produced within a human head phantom by in situ measurement of RF inhomogeneity as a function of coil design utilized at 8 T. The heating patterns of 1/4 wavelength (long) and 1/8 wavelength 11-cm (short) transverse electromagnetic (TEM) coils loaded with a homogeneous human head phantom at 340 MHz were evaluated. In addition, different transmit/receive (T/R) configurations were used in search for the possibility of "hot-spot" formation. Fluoroptic thermometry was used to measure temperatures in multiple positions in a head phantom made of ground turkey breast for RF powers corresponding to a specific absorption rate (SAR) of 4.0 W/kg for 10 min. Numerical simulations were performed to study the general RF power deposition patterns in phantoms at 340 MHz including the effects of field polarization. The temperature increases varied from 0 to 0.8 degrees C for the long RF coil, while the short RF coil produced a maximum temperature change of 0.5 degrees C. Similar to ultra high-field electromagnetic simulations, these measurements revealed low peripheral and high deep-tissue heating at 8 T. The findings indicated that the largest temperature changes for both cases were less than 1 degrees C. While these results showed an increase in localized heating due to RF pulses at 8 T, they highlight that RF inhomogeneity could be redistributed using different RF coil designs through which the hot spots could be made cooler.  相似文献   

7.
A novel radio frequency (RF) field intensity mapping or imaging method using a composite NMR spin-echo sequence is proposed. A composite spin-echo RF pulse with 90 degrees y-180 degrees x-90 degrees y sequence makes phase change in the final image depending on the RF field intensity on the object. The resultant phase change or phase map can be used to obtain the actual RF flip-angle map for a given condition which includes the status of tuning and RF inhomogeneity, etc. Bloch equation has been solved numerically to obtain the effects of the RF field intensity as well as the main magnetic field inhomogeneity and the results are used for the mapping (imaging) of the RF field intensity. Phantom studies have been performed using a 1.5 Tesla whole body MRI system and the results are presented.  相似文献   

8.
A systematic design procedure for selective pulses in NMR imaging   总被引:1,自引:0,他引:1  
Spectral tailoring of an amplitude-modulated radio-frequency (RF) pulse may be used to modify the slice-profile produced by a selective excitation sequence. Optimisation of the profile by intuitive means is difficult, however, due to the non-linearity of the magnetisation's response. A design procedure is presented which uses computer-simulation to calculate the response to an arbitrary RF envelope, and alters systematically the shape of the envelope in order to optimise the slice-profile. Two forms of modulation function are suggested, both based on a truncated-sinc, and the simulated response to optimised 90 degrees and 180 degrees pulses is shown. The effect on the slice-profile of RF magnetic field inhomogeneity is discussed.  相似文献   

9.
High spatial resolution NMR imaging techniques have been developed recently to measure the spatial inhomogeneity of a polymer coating film. However, the substrates of the polymer coatings for such experiments are generally required to be non-metallic, because metals can interact with static magnetic fields B(0) and RF fields B(1) giving rise to artifacts in NMR images. In this paper we present a systematic study on the effects of metallic substrates on 1D profiles obtained by high resolution NMR imaging. The off-resonance effect is discussed in detail in terms of the excitation profile of the RF pulses. We quantitatively show how the NMR signal intensities change with frequency offset at different RF pulse lengths. The complete NMR profiles were simulated using a Finite Element Analysis method by fully considering the inhomogeneities in both B(1) and B(0). The excellent agreement between the calculated and measured NMR profiles on both metallic and non-metallic substrates indicates that the experimental NMR profiles can be reproduced very well by numerical simulations. The metallic substrates can disturb the RF field of the coil by eddy current effect and therefore change the NMR profiles. To quantitatively interpret the NMR profile of a polymer layer on a metallic substrate, the profile has to be divided by the profile of a reference on the same metallic substrate located at the same distance from the coil.  相似文献   

10.
We introduce a simple, efficient, low-SAR method for magnetic resonance imaging in the presence of a static field with a permanent, and possibly large gradient. The technique, which is called slant-slice imaging is essentially a spin-echo imaging sequence except that the imaging slice is oriented such that the static field gradient can be used in conjunction with applied gradients during readout. Data are collected for 2D slices. Unlike single point imaging techniques, entire lines of k-space are acquired with each readout. The slant-slice pulse sequence is used to obtain high quality images, using a clinical scanner to simulate a static field with a large permanent gradient. The effects of the inhomogeneity are quantified by two parameters nu and q, which are useful for assessing the utility of a magnet design for 3D-MR imaging.  相似文献   

11.
The design of broadband excitation and inversion pulses with compensation of B(1)-field inhomogeneity is a long standing goal in high resolution NMR spectroscopy. Most optimization procedures used so far have been restricted to particular pulse families to keep the scale of the problem within manageable limits. This restriction is unnecessary using efficient numerical algorithms based on optimal control theory. A systematic study of rf-limited broadband excitation by optimized pulses and broadband inversion by optimized pulses with respect to bandwidth and B(1)-field is presented. Upper limits on minimum pulse lengths are set for different degrees of pulse performance.  相似文献   

12.
B(1) Field inhomogeneity and the relative effects of dielectric resonances are analyzed within the context of ultra high field MRI. This is accomplished by calculating the electromagnetic fields inside spherical phantoms and within a human head model in the presence and absence of an RF coil. These calculations are then compared to gradient echo and RARE images, respectively. For the spherical phantoms, plane incident wave analyses are initially presented followed by full wave finite difference time domain (FDTD) calculations. The FDTD methods are then utilized to examine the electromagnetic interactions between the TEM resonator and an anatomically detailed human head model. The results at 340 MHz reveal that dielectric resonances are most strongly excited in objects similar in size to the human head when the conducting medium has a high dielectric constant and a low conductivity. It is concluded that in clinical UFHMRI, the most important determinants of B(1) field homogeneity consist of 1) the RF coil design, 2) the interaction between the RF coil, the excitation source and the sample, and finally 3) the geometry and electrical properties of the sample.  相似文献   

13.
The spectrum of neutral intersubband excitations in single and double quantum wells has been studied by the inelastic light scattering method. It is shown that excitation energies in an external magnetic field have an anisotropic component proportional to the dipole moment of excitations along the growth axis of the quantum wells. Consequently, the measurement of excitation energy in a magnetic field makes it possible to experimentally estimate the quantitative measure of asymmetry of the quantum wells (dipole moment of the intersubband transition). In addition, a parallel magnetic field makes it possible to considerably extend the range of momenta studied since it shifts the dispersion curves in the momentum space by the value of the anisotropic component. A new method is proposed for determining the symmetry of double quantum wells. In asymmetric wells, intersubband excitations appear between the layers and have a large dipole moment along the growth axis. In symmetric wells, the magnetic field itself induces the dipole moment of intersubband excitations so that the excitation spectrum does not change upon magnetic field inversion. Analysis of energy anisotropy in intersubband excitations in double quantum wells makes it possible to determine the symmetry of double wells to a high degree of accuracy.  相似文献   

14.

Purpose

To investigate the influence of dual-source parallel radiofrequency (RF) excitation on clinical breast MR images.

Methods

A 3 T MR system with both dual-source and conventional single-source RF excitations was used to examine 22 patients. Axial TSE-T2WI with fat suppression, TSE-T1WI without fat suppression, THRIVE (3D field echo) and DWI (SE-EPI) were obtained by using both excitation techniques. Image homogeneity, image contrast and lesion conspicuity were measured or independently scored by two radiologists and were compared by paired-sample t test or Wilcoxon test.

Results

Both excitations revealed 24 lesions. For SE sequences using dual-source mode, image homogeneity was improved (P = 0.00), scan time was reduced, and ghost artifacts on DWI were significantly reduced (P = 0.00). However, image contrast was not increased and lesion conspicuity had no significant difference between two modes, except DWI on which lesion conspicuity was significantly improved (P = 0.00), due to less ghost artifacts. For field-echo sequence, image homogeneity, acquisition time, image contrast and lesion conspicuity had no significant difference between the two modes.

Conclusions

Dual-source parallel RF transmission has some added value for improving breast image quality. However, its value is limited in terms of improving lesion detection and characterization.  相似文献   

15.
An optimal control algorithm for generating purely phase-modulated pulses is derived. The methodology is applied to obtain broadband excitation with unprecedented tolerance to RF inhomogeneity. Design criteria were transformation of Iz-->Ix over resonance offsets of +/-25 kHz for constant RF amplitude anywhere in the range 10-20 kHz, with a pulse length of 1 ms. Simulations transform Iz to greater than 0.99 Ix over the targetted ranges of resonance offset and RF variability. Phase deviations in the final magnetization are less than 2-3 degrees over almost the entire range, with sporadic deviations of 6-9 degrees at a few offsets for the lowest RF (10 kHz) in the optimized range. Experimental performance of the new pulse is in excellent agreement with the simulations, and the robustness of the excitation pulse and a derived refocusing pulse are demonstrated by insertion into conventional HSQC and HMBC-type experiments.  相似文献   

16.
A new method for NMR characterization of mechanical waves, based upon radiofrequency field gradient for motion encoding, is proposed. A binomial B1 gradient excitation scheme was used to visualize the mobile spins undergoing a periodic transverse mechanical excitation. A simple model was designed to simulate the NMR signal as a function of the wave frequency excitation and the periodicity of the NMR pulse sequence. The preliminary results were obtained on a gel phantom at low vibration frequencies (0-200 Hz) by using a ladder-shaped coil generating a nearly constant RF field gradient along a specific known direction. For very small displacements and/or B1 gradients, the NMR signal measured on a gel phantom was proportional to the vibration amplitude and the pulse sequence was shown to be selective with respect to the vibration frequency. A good estimation of the direction of vibrations was obtained by varying the angle between the motion direction and the B1 gradient. The method and its use in parallel to more conventional MR elastography techniques are discussed. The presented approach might be of interest for noninvasive investigation of elastic properties of soft tissues and other materials.  相似文献   

17.
Sensitivity-encoded phase undersampling has been combined with simultaneous slice excitation to produce a parallel MRI method with a high volumetric acquisition acceleration factor without the need for auxiliary stepped field coils. Dual-slice excitation was produced by modulating both spin and gradient echo sequences at +/-6 kHz. Frequency aliasing of simultaneously excited slices was prevented by using an additional gradient applied along the slice axis during data acquisition. Data were acquired using a four-channel receiver array and x4 sensitivity encoding on a 1.5 T MR system. The simultaneous parallel inclined readout image technique has been successfully demonstrated in both phantoms and volunteers. A multiplicative image acquisition acceleration factor of up to x8 was achieved. Image SNR and resolution was dependent on the ratio of the readout gradient to the additional slice gradient. A ratio of approximately 2:1 produced acceptable image quality. Use of RF pulses with additional excitation bands should enable the technique to be extended to volumetric acquisition acceleration factors in the range of x16-24 without the SNR limitations of pure partially parallel phase reduction methods.  相似文献   

18.
A class of chemical-shift-selective (CHESS) water suppression (WS) schemes is presented in which the characteristic frequency-domain excitation profiles of "adiabatic" full-passage (AFP) RF pulses are utilized for frequency-selective excitation of the water resonance. In the proposed WS schemes, dubbed WASHCODE, hyperbolic secant (HS) pulses were used as the AFP pulses. Besides the high immunity of WS efficiency toward B(1) inhomogeneity, these sequences also exhibit extraordinary insensitivity to the dispersion of the water T(1) relaxation times. The actual performance of the proposed WS schemes was achieved in particular by optimizing the frequency offsets of WS HS pulses and the time intervals between them. To reduce the RF power requirements of these WS sequences for in vivo applications, HS pulses with the minimum possible frequency bandwidths were employed, which also substantially reduced the adverse effects on the observed proton MR spectra. The proposed WS schemes were evaluated by simulations based on the Bloch equations. Several WS sequences which looked particularly promising were verified experimentally on the human brain on a 3 T MR scanner using very short echo-time STEAM for volume selection and a standard single-loop surface coil for both signal transmission and reception. Routinely, water-suppression factors ranging from 2000 to 4000 were achieved in vivo without additional adjustment of parameters for individual subjects and without violating legal safety limits.  相似文献   

19.
Fat suppression is important but challenging in balanced steady-state free precession (bSSFP) acquisitions, for a number of clinical applications. In the present work, the practicality of performing fat-water selective excitations using spatial-spectral (SPSP) RF pulses in bSSFP sequence is examined. With careful pulse design, the overall duration of these SPSP pulses was kept short to minimize detrimental effects on TR, scan time and banding artifact content. Fat-water selective excitation using SPSP pulses was demonstrated in both phantom and human bSSFP imaging at 3T, and compared to results obtained using a two-point Dixon method. The sequence with SPSP pulses performed better than the two-point Dixon method, in terms of scan time and suppression performance. Overall, it is concluded here that SPSP RF pulses do represent a viable option for fat-suppressed bSSFP imaging.  相似文献   

20.
The capabilities of toroid cavity detectors for simultaneous rotating frame imaging and NMR spectroscopy have been investigated by means of experiments and computer simulations. The following problems are described: (a) magnetic field inhomogeneity and subsequent loss of chemical shift resolution resulting from bulk magnetic susceptibility effects, (b) image distortions resulting from off-resonance excitation and saturation effects, and (c) distortion of lineshapes and images resulting from radiation damping. Also, special features of signal analysis including truncation effects and the propagation of noise are discussed. B(0) inhomogeneity resulting from susceptibility mismatch is a serious problem for applications requiring high spectral resolution. Image distortions resulting from off-resonance excitation are not serious within the rather narrow spectral range permitted by the RF pulse lengths required to read out the image. Incomplete relaxation effects are easily recognized and can be avoided. Also, radiation damping produces unexpectedly small effects because of self-cancellation of magnetization and short free induction decay times. The results are encouraging, but with present designs only modest spectral resolution can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号