首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional SiO2 photonic crystals (PhCs) are fabricated on quartz substrates by the vertical deposition method. Scanning electron microscopy measurement reveals that the samples exhibit an ordered close-packed arrangement of SiO2 spheres. It is found that the position of the [111] photonie band gap (PBG) shifts to a long wavelength (red shift) with increasing sphere size. Gap broadening effects are observed due to the presence of defects in the samples. Moreover, the optical properties of the PBG are very sensitive to the annealing temperature. Our results indicate that the optical properties of the PBG can be easily tuned in the visible region by appropriate experimental parameters, which will be useful for practical applications of PhC optical devices.  相似文献   

2.
A two-dimensional photonic crystal model with a periodic square dielectric background is proposed. The photonic band modulation effects due to the two-dimensional periodic background are investigated in detail. It is found that periodic modulation of the dielectric background greatly alters photonic band structures, especially for the Epolarization modes. The number, width and position of the photonic band gaps sensitively depend on the dielectric constants of the two-dimensional periodic background. Complete band gaps are found, and the dependence of the widths of these gaps on the structural and material parameters of the two alternating rods/holes is studied.  相似文献   

3.
The electric and magnetic energy distributions in photonic crystals (PC) are calculated by using the plane wave expansion (PWE) method. Even though the total electric and magnetic energy in each unit cell of photonic crystals are equal to each other, the ratio of electric and magnetic energy densities varies depending on the local position. Based on Fermi's golden rule, the optical gain is analysed in the full quantum framework that takes the nonuniform energy density ratio into account. This nonuniform energy density ratio in photonic crystals, defined in an equal form as gain modification factor, leads to spatially inhomogeneous modification of optical gain. Results reported in the paper provide a new perspective for analysing gain characteristics, as well as the lasing properties, in photonic crystals.  相似文献   

4.
A novel woodpile lattice structure is proposed. Based on plane wave expansion (PWE) method, the complete photonic band gaps (PBGs) of the novel woodpile three~dimensional (3D) terahertz (THz) photonic crystal (PC) with a decreasing symmetry relative to a face-centred-tetragonal (fct) symmetry are optimized by varying some structural parameters and the highest band gap ratio can reach 27.61%. Compared to the traditional woodpile lattice, the novel woodpile lattice has a wider range of the filling ratios to gain high quality PBGs, which provides greater convenience for the manufacturing process. The novel woodpile 3D PC will be very promising for materials of THz Junctional components.  相似文献   

5.
We propose a new method to form a novel controfiable photonic crystal with cold atoms and study the photonic band gap (PBG) of an infinite 1D CO2-laser optical lattice of SSRb atoms under the condition of quantum coherence. A significant gap generated near the resonant frequency of the atom is founded and its dependence on physical parameters is also discussed. Using the eigenquation of defect mode, we calculate the defect mode when a defect is introduced into such a lattice. Our study shows that the proposed new method can be used to optically probe optical lattice in situ and to design some novel and controllable photonic crystals.  相似文献   

6.
We investigate the wave propagation through the tilted interface of one-dimensional photonic crystals. Negative refraction can be realized by excitation of the Bloch states in the extended Brillouin zone with suppressed reflection. Equi-frequency surface analysis shows that the positive refraction, negative refraction or birefringence in this configuration can be achieved under a proper incident angle, which is confirmed by finite-difference timedomain simulations. The results may be useful in applications in the new devices based on one-dimensional photonic or optical waveguide arrays.  相似文献   

7.
Negative refraction and imaging properties of the electromagnetic wave through a two-dimensional photonic crystal (PC) slab, which consists of a square lattice of elliptical dielectric rods immersed in the air background, is studied by the plane-wave expansion method and the finite-difference time-domain method. A point source placed in the vicinity of the PC slab can form a good-quality image spot through the PC slab for the incident frequencies within the second photonic band. The calculated result also shows that negative refraction occurs in this kind of PC slab.  相似文献   

8.
We propose a scheme of optical one-way transmission by using one-dimensional photonic crystals (PhCs) with diffraction gratings on one side. The one-way transmission is realized by making the PhC opaque to the zeroth diffraction order and transparent to another propagating (in air) diffraction order. For such a structure with 10-period PhC, 93% of the incident energy passes through when an electromagnetic wave impinges from one side, and the transmittance decreases to the order of 0.001% as the electromagnetic wave illuminates from the other side.  相似文献   

9.
邓新华  刘念华 《中国物理快报》2007,24(11):3168-3171
We study the transmission of one-dimensional photonic crystals consisting of single-negative permittivity and single-negative permeability media by using transfer matrix method. A pair of transmission modes is found in the gap. The transmission modes are dependent only on the ratio of the thicknesses of the two alternating layers. The separation of a pair of transmission modes can be tuned by varying the thickness of the defect layer or the ratio of thicknesses of the two alternating layers.  相似文献   

10.
The transmission properties of one-dimensional photonie crystals (1DPCs) containing anisotropic metamaterials are theoretically studied. It is shown that the 1DPCs can possess a similar zero average index (zero-n) gaps, the edges of zero-~ gap are weakly dependent on the incident angles, scale length and the polarization of the electromagnetic wave. When an impurity is introduced, a defect mode appears inside the zeron gap with a very weak dependence on incident angles and sealing. It is found that in such photonic crystals, a transmitted Gaussian pulse with its carrier frequency lying in the lower gap edge, in the defect mode and in the bandgap, can experience a positive or negative group delay and hence a subluminal, ultra.slow or superluminal propagation with small distortions. These properties of the photonic crystals have potential applications in the transfer of information.  相似文献   

11.
Optical transmission properties of subwavelength planar fractals in terahertz (THz) frequency regime are studied by means of time-domain spectroscopy. The transmission spectra with multiple pass bands and stop bands are observed. The tunable photonic band gaps are realized by changing the angle between the principle axis of planar fractal and the polarization of THz wave. The possible application of the subwavelength optical component is discussed. We attribute the detected transmittance from subwavelength fractals to localized resonances.  相似文献   

12.
Colloidal photonic crystal heterostructures, composed of two opaline photonic crystal films of silica spheres with different diameters, are fabricated by a two-step spin-coating method. Scanning electron microscopy (SEM) and UV-vis spectrophotometer are used to characterize the heterostructures. The SEM images show good ordering of the two-layer colloidal crystals constituting the heterostructures. The transmission spectra measured from the (111) plane in the heterostructure show that the composite colloidal photonic crystals have double photonic stop bands. Furthermore, when the sizes of the silica spheres used for fabricating the composite photonic crystal are slightly different, the transmission spectrum shows that the composite photonic crystals have more extended bandgap than that of the individual photonic crystals due to partial overlapping of its two photonic stop bands.  相似文献   

13.
It is demonstrated that defects of any shape or size can be doped in holographic photonic crystals using a cw visible laser and spherical/cylindrical lens. Defects with different sizes at any depth in the material can be obtained by controlling the position of the foca/point of the lens and exposure value. We facilitate the implementation of sub-wavelength arbitrary point or line defects in large-size 2D holographic photonic crystals.  相似文献   

14.
Propagation of electromagnetic waves in one-dimensional plasma dielectric photonic crystals, the superlattice structure consisting of alternating plasma and dielectric materials, is studied theoretically using transfer matrix method. Numerical calculation is presented for plasma-air finite and infinite periodic structures. The results of photonic band gap characteristics are discussed in terms of plasma density, plasma width, and number of unit cells (N).  相似文献   

15.
Self-phase modulation can efficiently shape the spectrum of an optical pulse propagating along an optical material with Kerr nonlinearity. In this work we show that a one-dimensional Kerr nonlinear photonic crystal can impose anomalous spectrum modulation to a high-power ultrashort light pulse. The spectrum component at the photonic band gap edge can be one order of magnitude enhanced in addition to the ordinary spectrum broadening due to self-phase modulation. The enhancement is strictly pinned at the band gap edge by changing the sample length, the intensity or central wavelength of the incident pulse. The phenomenon is attributed to band gap induced enhancement of light-matter interaction.  相似文献   

16.
We study theoretically the nonlinear responses of one-dimensional photonic crystals (PCs) composed of alternating two kinds of single-negative (permittivity-negative and permeability-negative) materials embedded with a Kerrtype nonlinear defect layer. In conventional PCs, it is difficult to realize a bistable switching with both low threshold and quick response time. However, in PCs with single-negative materials, by changing the ratio of the thicknesses of the two types of layers, with the decreasing size of the structure, the switching response time is shortened and the threshold intensity decreases simultaneously.  相似文献   

17.
张裕仕 《光谱实验室》2010,27(3):1020-1023
应用平面波展开法研究了三维光子晶体的带隙特性,得到了随着填充率及材料的变化带隙的变化规律,结果为三维光子晶体器件的开发提供了理论依据。  相似文献   

18.
We demonstrate a single-exposure holographic fabrication of two-dimensional photonic crystal with round- cornered triangular 'atoms' arranged in a triangular lattice. Simulation results show that double absolute photonic band gaps exist in this structure. Our experimental results show that holographic lithography can be used to fabricate photonic crystals not only with various lattice structures but also with various kinds of structures of the atoms, to obtain absolute band gaps or a particular band gap structure. Furthermore, the single-exposure holographic method not only makes the fabrication process simple and convenient but also makes the structures of the atoms more perfect.  相似文献   

19.
A new ternary photopolymer system is used in fabricating photonic crystals (PhCs) with controlled defects by combination of single-photon and two-photon photopolymerization. The former process can produce PhCs in one-step recording with a low-power (tens mW) continuous-wave laser at 532nm, while the latter can create desired defects. The preparation of the material, the optical setup and the preliminary experimental results are given. Compared with other methods, this approach is much more accessible and convenient for use of visible light and has advantages of making PhCs in a large scale quickly and economicaJly and introducing any defects exactly, especially for three-dimensional structures.  相似文献   

20.
We demonstrate a photonic crystal hetero-waveguide based on silicon-on-insulator (SOI) slab, consisting of two serially connected width-reduced photonic crystal waveguides with different radii of the air holes adjacent to the waveguide. We show theoretically that the transmission window of the structure corresponds to the transmission range common to both waveguides and it is in inverse proportion to the discrepancy between the two waveguides. Also the group velocity of guided mode can be changed from low to high or high to low, depending on which port of the structure the signal is input from just in the same device, and the variation is proportional to the discrepancy between the two waveguides. Using this novel structure, we realize flexible control of transmission window and group velocity of guided mode simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号