首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nickel zinc ferrite (Ni0.4Zn0.6Fe2O4) films on Si (100) substrate were synthesized using a spin-coating method. The crystallinity of the Ni0.4Zn0.6Fe2O4 films with the thickness of about 386 nm became better as the annealing temperature increased. The films have smooth surface, relatively good packing density and uniform thickness. The volatilization of Zn is serious at 900 °C. With the increase of annealing temperature, the saturation magnetization M s increases in the temperature ranging from 400 to 700 °C, however, decreases above 700 °C, and the coercivity H c increases in the temperature range 400–800 °C, decreases above 800 °C. After annealed at 700 °C for 2 h in air with the heating rate 2 °C/min, the film shows a maximum saturation magnetization M s of 349 emu/cc and low coercivity H c of 66 Oe. The M s is higher than others which prepared by this method, however, the H c is lower. The M s of Ni0.4Zn0.6Fe2O4 films annealed at 700 °C increases with increasing annealing time and the H c changes slightly.  相似文献   

2.
(La0.7Sr0.3)MnO3 thin films were deposited on SiO2/Si substrates by a metal-organic decomposition (MOD) method, and then Pb(Zr0.52Ti0.48)O3 (PZT) thin films were grown on (La0.7Sr0.3)MnO3-coated SiO2/Si substrates by a sol-gel method. The effects of annealing temperature on the crystalline phases, microstructures and electrical properties of the PZT films were investigated. X-ray diffraction analysis results indicated that the PZT films with a perovskite single phase could be obtained by annealing at 650°C. The dielectric constant and the remnant polarization of the PZT films increased with increasing annealing temperature. The remnant polarization and the coercive field of the films annealed at 650°C were 18.3 μC/cm2 and 35.5 kV/cm, respectively, whereas the dielectric constant and loss value measured at 1 kHz were approximately 1100 and 0.81, respectively.  相似文献   

3.
Zinc gallate (ZnGa2O4) nanopowders doped with Cr3+ (1?mo%) were synthesized by the citric acid assisted sol–gel method. The influence of annealing temperature, structural, morphological, and optical properties of ZnGa2O4: Cr3+ (1?mol%) nanosized particles were investigated. The X-ray diffraction (XRD) spectra indicated that the nanoparticles are cubic in structure and the annealing temperature did not influence any c in structure. The average crystallite size of ZnGa2O4: Cr3+ nanoparticles were observed to increase from 11.85 to 30.88?nm as the annealing temperature increased from 600 to 1000?°C. The scanning electron microscopy (SEM) showed nearly spherical nanostructures that change in size with annealing temperature. The high resolution transmission electron microscope (HR-TEM) images show well resolved lattice fringes which is an indications of highly crystalline samples. Ultraviolet–visible (UV–Vis) measurement show decrease in reflectance in visible region and energy band gap was found to decrease with annealing temperature. The photoluminescence (PL) intensity was found to be maximum for sample annealed at high temperature (1000?°C) and least with sample annealed at low temperature (600?°C). An increase in annealing temperature leads significantly increment in PL intensity. The degree of crystallinity also increased with annealing temperature from XRD, SEM, and HR-TEM analysis. The photoluminescence lifetimes, particle size, and emission spectra are comparable with reports on bioimaging applications.  相似文献   

4.
Ni0.6Zn0.4Fe2O4 nano-particles have been synthesized by self-propagating auto-combustion of nickel zinc ferrous fumarato-hydrazinate complex. The precursor complex has been characterized by chemical analysis, IR, AAS, thermal analysis and isothermal mass loss studies. The precursor on ignition undergoes self-propagating auto combustion to give Ni0.6Zn0.4Fe2O4. The X-ray diffraction studies confirmed the single phase formation of nano-size ‘as synthesized’ Ni0.6Zn0.4Fe2O4. TEM observation showed the average particle size to be 20 nm. Infrared and magnetization studies were also carried out on the ‘as synthesized’ Ni0.6Zn0.4Fe2O4. The lower value of saturation magnetization and higher Curie temperature of ‘as synthesized’ ferrite also hint at the nano size nature.  相似文献   

5.
The formation of (Ln3+)2(M4+)2O7 (Ln = Gd, Dy; M = Zr, Hf) nanocrystallites obtained by annealing mixed hydroxides LnM(OH)7 · nH2O (precursors) synthesized by coprecipitation has been studied by synchronous thermal analysis, X-ray diffraction (normal and anomalous diffraction of synchrotron radiation), and EXAFS. In the systems under consideration, heat treatment of the X-ray amorphous precursors leads to their dehydration, and at 600–700°C, nanocrystallites with an fcc structure of disordered fluorite start forming. A further increase in temperature is accompanied by crystallite growth (CDD) and considerable change in the local structure of the heat-treated compounds. The crystallization enthalpies and activation energies have been determined.  相似文献   

6.
Differential scanning calorimetry (DSC) and thermomechanical analysis (TMA) were used to study the thermal behaviour of (50-x)Na2O-xTiO2-50P2O5 and 45Na2O-yTiO2-(55-y)P2O5 glasses. The addition of TiO2 to the starting glasses (x=0 and y=5 mol% TiO2) resulted in a nonlinear increase of glass transition temperature and dilatation softening temperature, whereas the thermal expansion coefficient decreased. All prepared glasses crystallize under heating within the temperature range of 300–610°C. The contribution of the surface crystallization mechanism over the internal one increases with increasing TiO2 content. With increasing TiO2 content the temperature of maximum nucleation rate is also gradually shifted from a value close to the glass transition temperature towards the crystallization temperature. X-ray diffraction measurements showed that the major compounds formed by glass crystallization were NaPO3, TiP2O7 and NaTi2(PO4)3. The chemical durability of the glasses without titanium oxide is very poor, but with the replacement of Na2O or P2O5 by TiO2, it increases sharply.  相似文献   

7.
Summary Thermodynamic properties of a layered perovskite oxide Gd2SrCo2O7 have been studied. Powder X-ray diffraction, electric resistivity, magnetic susceptibility and heat capacity measurements were carried out. The crystal structure was determined as I4/mmm. The temperature dependence of the magnetic susceptibility was fitted to the Curie-Weiss behavior with antiferromagnetic interaction. Spin state of Co3+ ion was derived to be intermediate spin state configuration (t2g5eg1). The spin ordering was observed as a broad anomaly in the heat capacity curve with a peak at 2 K. The measured entropy was 35.47 J K-1mol-1, which was 65% of expected value. Thus the spin ordering should not be completed at the lowest temperature 0.2 K covered in the present experiments and/or some short range ordering remains at higher temperatures.  相似文献   

8.
Highly (111) oriented, phase-pure perovskite Pb(Zr0.3Ti0.7)O3 (or PZT 30/70) thin films were deposited on single-crystal, (0001) wurtzite GaN/sapphire substrates using the sol-gel process and rapid thermal annealing. The phase, crystallinity, and stoichiometry of annealed PZT films were evaluated by X-ray diffraction and Rutherford backscattering spectroscopy. The atomic force microscopy revealed a smooth PZT surface (rms roughness ∼1.5 nm) with striations and undulations possibly influenced by the nature of the underlying GaN surface. The cross-sectional field-emission scanning electron microscopic images indicated a sharper PZT/GaN interface compared to that of sol-gel derived PZT on (111) Pt/TiO2/SiO2/(100) Si substrates. The capacitance-voltage (C-V) characteristics for PZT in the Pt/PZT/GaN (metal-ferroelectric-semiconductor or MFS) configuration were evaluated as a function of annealing temperature and applied voltage. The observed C-V hysteresis stemmed from trapped charge at defect sites within PZT. Also, the lower capacitance density (C/A = 0.35 μF/cm2, where A is the area of an electrode) and remnant polarization (P r ∼ 4 μC/cm2) for PZT in the MFS configuration, compared to the values for PZT in the MFM configuration (Pt/PZT/Pt), were attributed to the high depolarization field within PZT.  相似文献   

9.
The synthesis and structure of complexes [Co(solv)6][B10H10] (solv = DMF and DMSO) have been reported. Both complexes have been prepared in a high yield by the reaction between cobalt(II) salts and closo-decaborates Cat2[B10H10] in the corresponding solvent. The complexes have been characterized by elemental analysis, IR and UV spectroscopy, X-ray powder diffraction, and X-ray crystallography. The thermal properties of the compounds have been studied in the temperature range 20–600°C under argon. The conditions to form cobalt borides have been determined based on the results of thermal analysis, subsequent annealing of the complexes in various conditions, and analysis of IR spectra of the resulting thermolysis products.  相似文献   

10.
Nanosized TiO2 and nano-anatase TiO2 decorated on SiO2 spherical core shells were synthesized by using a sol–gel method. The synthesized pure TiO2 nano particle and TiO2 grafted on SiO2 sphere with various ratios have been characterized for their structure and morphologies by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrophotometry (FTIR) and transmission electron microscopy (TEM). Their surface areas were measured using the BET method. The photocatalytic activity of all nanocomposites was investigated using methylene blue as a model pollutant. The synthesized TiO2/SiO2 particles appeared to be more efficient in the degradation of methylene blue pollutant, as compared to pure TiO2 particles.  相似文献   

11.
The polycrystalline ferroelectric compounds of general formula Pb1−X Ba X TiO3 with X = 0.00, 0.1, 0.2 and 0.5 were prepared by high temperature solid-state reaction technique using high purity oxides and carbonates. The compounds formation was confirmed by X-ray diffraction and all the X-ray peaks were indexed with tetragonal structure of space group P4mm. Morphology and particle size of the compounds were obtained using scanning electron microscopy. Ferroelectric phase transition, enthalpy change, and specific heat of the compounds were obtained using modulated differential scanning calorimetry. It was observed that the phase transition temperature decreased linearly with the increase of substitution concentration.  相似文献   

12.
Summary A thermal study was performed on the RuSr2GdCu2O8 (Ru-1212) magnetic superconductor phase to investigate the effect of the annealing treatments in flowing O2 on the stability limit of the phase and on its structural, magnetic and transport properties. DTA-TG measurements were utilized to determine the decomposition process and the dependence of the decomposition temperature on the annealing atmosphere. The decomposition of the Ru-1212 phase was found sensitive to the oxygen partial pressure and increases with PO2 and the annealing time. The annealing treatments exert a depressing effect on the strength of the magnetic interaction, an enhancement on the superconductive properties and the vanishing of the magnetostriction. A decomposition reaction of Ru-1212 phase was proposed and discussed.  相似文献   

13.
The thermal stability, kinetics and glass forming ability of an Fe77C5B4Al2GaP9Si2 bulk amorphous alloy have been studied by differential scanning calorimetry. The activation energy, frequency factor and rate constant corresponding to the multiple crystallization steps were determined by the Kissinger method. X-ray diffraction and transmission electron microscopy studies revealed that the crystallization starts with the primary precipitation of α-Fe from the amorphous matrix. The kinetics of nucleation of the α-Fe nanoparticles was investigated by two different methods, i.e. isothermal annealing and continuous heating after partial annealing.  相似文献   

14.
In this study the formation of chromium substituted YBa2Cu4O8 (Y-124) superconductors has been investigated by TG/DTA measurements. The YBa2(Cu1−xCrx)4O8 ceramics with nominal compositions of x=0.01, 0.03, 0.05, 0.10 and 0.20 have been prepared by an aqueous sol-gel method using aqueous mixtures of the corresponding metal acetates and nitrates. Homogeneous precursor gels were obtained by complexing metal ions with tartaric acid. To assist the interpretation of the results obtained the synthesis products were additionally characterized by X-ray powder diffraction (XRD) and resistivity measurements. It was determined that doping the YBa2Cu4O8 phase with chromium has a strong effect on the phase purity and superconducting properties of the synthesis products.  相似文献   

15.
In this work, we have studied the influence of the pH on the synthesis and structural properties of the Ba0.77Ca0.23TiO3 nanopowders synthesized by a modified polymeric precursor method, in order to achieve non-agglomerated powders. Synthesis, morphology, thermal reactions, crystallite and average particle size of the synthesized powders were investigated through thermal analysis (DTA/TG), X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and Infrared spectroscopy. In summary, Ba0.77Ca0.23TiO3 nanopowders were synthesized for the first time at a relative low temperature (500 °C). It was also found that the alkalinity and acidity of the solution presented a great influence on the powder properties. The best results were obtained from solutions with pH = 8.5 and 11 whose nanopowders presented weakly agglomerate, with homogeneous particle size and a narrow size distribution (30–40 nm). This behavior could be explained based on the FT-IR results in which it was possible to see the increased of the chelation in higher pHs.  相似文献   

16.
The metal-ferroelectric-semiconductor (MFS) heterostructure has been fabricated using Bi3.25La0.75Ti3O12 (BLT) as a ferroelectric layer by sol-gel processing. The effect of annealing temperature on phase formation and electrical characteristics of Ag/BLT/p-Si heterostructure were investigated. The BLT thin films annealed at from 500°C to 650°C are polycrystalline, with no pyrochlore or other second phases. The C-V curves of Ag/BLT/p-Si heterostructure annealed at 600°C show a clockwise C-V ferroelectric hysteresis loops and obtain good electrical properties with low current density of below 2×10−8 A/cm2 within ±4 V, a memory window of over 0.7 V for a thickness of 400 nm BLT films. The memory window enlarges and the current density reduces with the increase of annealing temperature, but a annealing temperature over 600°C is disadvantageous for good electrical properties.  相似文献   

17.
Ni0.5Zn0.5Fe2O4 nanofibers with addition of 0–5 wt% Bi2O3 were synthesized by calcination of the electrospun polyvinylpyrrolidone/inorganic composite nanofibers at the temperature below the melting point of Bi2O3. The effects of Bi2O3 addition on the phase structure, morphology and magnetic properties of the nanofibers were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, selected area electron diffraction and vibrating sample magnetometer. It is found that the nanofiber diameter, crystallite size and magnetic parameters can be effectively tuned by simply adjusting the amount of Bi2O3 addition. The average diameter of Ni0.5Zn0.5Fe2O4 nanofibers doped with different contents of Bi2O3 ranges from 40 to 63 nm and gradually decreases with increasing Bi2O3 content. The addition of Bi2O3 does not induce the phase change and all the samples are a single-phase spinel structure. The amorphous Bi2O3 tends to concentrate on the nanoparticle surface and/or grain boundary and can retard the particles motion as well as the grain growth, resulting in a considerable reduction in grain size compared to the pristine sample. The specific saturation magnetization and coercivity of the nanofibers gradually decrease with the increase of Bi2O3 amount. Such behaviors are explained on the basis of chemical composition, surface effect, domain structure and crystal anisotropy.  相似文献   

18.
New metal-rich mixed nickel-silicon and nickel-germanium chalcogenides, Ni5.68SiSe2, Ni5.46GeSe2, and Ni5.42GeTe2, were synthesized by high-temperature ceramic techniques. The X-ray diffraction study of single crystals grown from a molten flux revealed that the compounds are isostructural and crystallize in the tetragonal system (space group I4/mmm, Z = 2). These compounds are the first members of the family of M7−δEX2-type (M = Ni or Pd; E = Sn or Sb; X is chalcogen) intergrowth structures containing “light” p elements E. Resistivity measurements on pressed textured pellets showed that both selenides are anisotropic metallic conductors in the directions parallel and perpendicular to the heterometallic bond systems. The geometric criteria of stability of the intergrowth structure type under consideration are discussed. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1632–1638, September, 2007.  相似文献   

19.
The process of formation of cerium titanate films as a function of annealing temperature and composition has been studied by combining X-ray diffraction analysis and far infrared spectroscopy. The films have been prepared by a sol–gel synthesis using metal chlorides as precursors; the synthesis allows obtaining cerium titanate films upon annealing in air. A brannerite type, CeTi2O6, phase has been identified by X-ray diffraction and Rietveld analysis on thin films. CeTi2O6 is formed upon annealing at 700 °C and in a limited range of ceria-titania mixed compositions. The far infrared spectra are useful to observe the formation of crystalline phases at the beginning of the crystallization process at lower firing temperatures, when the XRD analysis is not enough sensitive.  相似文献   

20.
Al2O3-Cr2O3 solid solutions with 0, 4, 7, 10 and 20 mol% of corundum were synthesized using a high-pressure/high-temperature apparatus and characterized by X-ray powder diffraction. Calorimetric measurements were carried out using DSC-111 (Setaram). Heat capacity was measured by the enthalpy method in a temperature range of 260–340 K, near magnetic phase transition in pure Cr2O3 (305 K). Magnetic contribution into the heat capacity was derived and found to change irregularly with the composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号