首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the strong optical response of localized surface plasmon (LSP) in metallic nanoparticles (NPs), the light-induced force (LIF) is also strong and can be used for the control of their dynamics even at room temperature. However, properties of LIF are still unclear under the collective effects of LSP in multiple NPs. In this article, I discuss the fundamental properties of LIF exerted on metallic NPs taking into account photomediated interaction between NPs, and light-induced dynamics of NPs in fluid medium (for example, water) in the presence of the thermal fluctuations. Remarkably, it has been clarified that the collective optical response of LSP can be greatly modulated through the dynamical pattern formation process of NPs by LIF.  相似文献   

2.
This tutorial review presents an overview of theoretical methods for predicting and understanding the optical response of gold nanoparticles. A critical comparison is provided, assisting the reader in making a rational choice for each particular problem, while analytical models provide insights into the effects of retardation in large particles and non-locality in small particles. Far- and near-field spectra are discussed, and the relevance of the latter in surface-enhanced Raman spectroscopy and electron energy-loss spectroscopy is emphasized.  相似文献   

3.
The paper overviews progress in the development of molecular media based on organic compounds possessing a high third-order nonlinear optical susceptibility. Such media are useful in the design of elements for optical data processing devices. TheX (3) values of polyconjugated polymers and organic dyes are presented; these depend on the film production method and molecular assembly organization. The review discusses nonlinear optical properties of metallic fractal clusters. The nonlinear response of a molecular medium is shown to be greatly enhanced by aggregation of molecules and by their location in a local field of a metallic cluster.Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 34, No. 6, pp. 90–105, November–December, 1993.Translated by L. Smolina  相似文献   

4.
The optical response of alkali metal clusters is shown to be sensitive to a proper treatment of the electronion interaction and to the ionic spatial structure. A spherical symmetry model based on a combination of a geometrical optimization of the ionic structure and the random phase approximation (RPA) with exact exchange is applied to calculate the optical response of Li 139 + . The optical response obtained within this model is in good agreement with the measured giant dipole resonance.  相似文献   

5.
In understanding of the hot spot phenomenon in single-molecule surface enhanced Raman scattering (SM-SERS), the electromagnetic field within the gaps of dimers (i.e., two particle systems) has attracted much interest as it provides significant field amplification over single isolated nanoparticles. In addition to the existing understanding of the dimer systems, we show in this paper that field enhancement within the gaps of a particle chain could maximize at a particle number N>2, due to the near-field coupled plasmon resonance of the chain. This particle number effect was theoretically observed for the gold (Au) nanoparticles chain but not for the silver (Ag) chain. We attribute the reason to the different behaviors of the dissipative damping of gold and silver in the visible wavelength range. The reported effect can be utilized to design effective gold substrate for SM-SERS applications.  相似文献   

6.
We report on the impregnation of THF solutions of the low-valent heterometallic cluster NEt(4)[Co(3)Ru(CO)(12)] into two mesoporous silica matrices, amorphous xerogels and ordered MCM-41, and a study of its thermal decomposition into metallic nanoparticles by X-ray diffraction, transmission electron microscopy and in situ magnetic measurements under controlled atmospheres. The decomposition of the cluster was monitored as a function of temperature by examining the chemical composition of the particles, their size distributions and their structures as well as their magnetic properties. Treatment under inert atmosphere (i.e. argon) at temperatures below 200 degrees C resulted in the formation of segregated spherical particles of hcp-ruthenium (2.3 +/- 1.0 nm) and hcp-cobalt (3.1 +/- 0.9 nm). The latter is transformed to fcc-cobalt (3.2 +/- 1.0 nm) above 270 degrees C. At higher temperatures, Co-Ru alloying takes place and the Ru content of the particles increases with increasing temperature to reach the nominal composition of the molecular precursor, Co(3)Ru. The particles are more evenly distributed in the MCM-41 framework compared to the disordered xerogel and also show a narrower size distribution. Owing to the different magnetic anisotropy of hcp- and fcc-cobalt, which results in different blocking temperatures, we were able to clearly identify the products formed at the early stages of the thermal decomposition procedure.  相似文献   

7.
We present a spherical symmetry model, containing explicitly nonlocal effects in the electron-ion interaction, to describe the electronic properties of lithium clusters. We assume either an optimized discrete ionic structure or a jellium structure. The model provides the nonlocal potential from which the random phase approximation with exact exchange is applied to calculate the optical response of Li clusters. The optical response of Li 139 + obtained within this model is in good agreement with the measured giant dipole resonance. The same model is used to predict alkali-metal effective masses; the agreement with band structure calculations is emphasized.  相似文献   

8.
Arrays of 6.6 nm iron oxide nanocrystals coated with fatty acid molecules were produced using the Langmuir-Blodgett technique. The arrays had a varying number of layers stacked together, going from two dimensional to three dimensional and two different in-plane interparticle separations. While temperature-dependent ac susceptibility measurements of the isolated nanocrystals obeyed the Neel-Brown relaxation law, the array relaxation deviated significantly from this simple law. This deviation together with the observed dc field influence on the susceptibility-temperature curves, the large shifts in blocking temperatures and reduction in susceptibility-temperature curve widths on going from isolated particles to the arrays indicated collective magnetization dynamics during magnetization freezing. A scaling law analysis of this freezing dynamics yielded different powers for the two different interparticle separations with no dependence on dimensionality. In spite of the spin-glass-like behavior, it is possible that small, magnetically ordered domains of nanocrystals form at low temperature.  相似文献   

9.
Many properties of atomic clusters have been found to be size dependent, e.g., the optical response. There are, however, factors other than size that can also play an important role in determining the properties of nanoscale systems. Temperature, in particular, has been shown to have a strong effect on the optical response of open-shell sodium clusters. We incorporate the temperature effect on the optical absorption spectra by combining pseudopotentials, Langevin molecular dynamics, and time-dependent density functional theory. We have done calculations for several open-shell sodium clusters, Na(4) (+), Na(7) (+), and Na(11) (+), for which experimental data are available for comparison. We find that the positions of the lower energy peaks of the calculated spectra correspond very well to the peaks in the experimental spectra, although the local density approximation tends to overestimate the gap of the smaller clusters by up to 0.2 eV and underestimate the gap of the largest cluster by 0.4 eV. We fit the width of the peaks in the lower-temperature calculations to the corresponding experimental result to obtain the instrumental linewidth. We then use this same width for the high-temperature calculations and find very good agreement with experiment. Finally, we analyze the transitions that contribute to the observed peaks in the absorption spectra and we plot the effective valence charge density for specific transitions for each cluster. We find that for the two smaller clusters the absorption spectra are dominated by transitions from the occupied levels to a few (three for Na(4) (+) and five for Na(7) (+)) empty levels, although the contribution from transitions to other empty levels can still be significant. In contrast, the absorption spectra for Na(11) (+) come from a greater mixture of transitions as evidenced in the analysis as well as in the plot of the effective valence charge density.  相似文献   

10.
We investigate the electron dynamics of Na9 + excited by strong fs laser pulses and fast proton collisions. Non-perturbative numerical simulations are performed using time-dependent density-functional methods on a semiclassical and fully quantal level. Both excitation mechanisms induce pronounced dipole oscillations accompanied by rapid ionization.  相似文献   

11.
Metal nanoparticles can be used as building blocks for the formation of nanostructured materials. For the design of materials with specific (optical) properties, several approaches can be followed, even when starting from the very same basic units. In this article, a survey is provided of the optical properties of noble metal nanoparticles, specifically gold, silver, and their combinations, prepared in solution through colloid chemical methods. The optical properties are shown to be mainly influenced by the surface plasmon resonance of conduction electrons, the frequency of which is not only determined by the nature of the metal but also by a number of other parameters, such as particle size and shape, the presence of a capping shell on the particle surface, or the dielectric properties of the surrounding medium. Recent results showing how these various parameters affect the optical properties are reviewed. The results highlight the high degree of control that can now be achieved through colloid chemical synthesis.  相似文献   

12.
Layer-by-Layer (LbL) stepwise self-assembly of the polyelectrolytes poly(allylamine hydrochloride) and poly(styrenesulfonate) was used to create a macromolecular nanoshell around drug nanoparticles (approximately 150 nm in diameter). Dexamethasone, a steroid often used in conjugation with chemotherapy, was chosen as a model drug and was formulated into nanoparticles using a modified solvent-evaporation emulsification method. Measurement of the zeta potential (zeta-potential) after each polyelectrolyte layer was electrostatically added confirmed the successful addition of each layer. Additionally, data acquired from X-ray photon spectroscopy (XPS) indicated the presence of peaks representative of each physisorbed polyelectrolyte layer. Surface modification of the nanoshell was performed by covalently attaching poly(ethylene glycol) (PEG) with a molecular weight of 2000 to the outer surface of the nanoshell. Zeta potential measurements and XPS indicated the presence of PEG chains at the surface of the nanoshell. The polymeric nanoshell on the surface of the drug nanoparticle provides a template upon which surface modifications can be made to create a stealth or targeted drug delivery system.  相似文献   

13.
Spherically averaged pseudopotential (SAPS) calculations have been done for Mg n clusters, withn up to 250 within the framework of density functional theory. The electronic structure is computed resorting to the Thomas-Fermi-Dirac-Weizsäcker (TFDW) approximation for the kinetic energy. The equilibrium geometries have been obtained by minimizing the total cluster energy with respect to the atomic positions using the steepest-descent method. The ground state geometries obtained in this way are formed by spherical atomic shells, the number of them increasing with cluster size, up to a number of four for the biggest sizes considered here. An analysis of the distribution of the interatomic distances shows that the more internal is the shell, the more contracted are the interatomic distances. This effect diminishes progressively with increasing cluster size. For the purpose of comparison, similar calculations have been done with Cs n clusters in the same size range, allowing us to reproduce previous results obtained using a more elaborated density functional technique (Kohn-Sham method). The inhomogeneous contraction of interatomic distances then appears as a general fact for simple metallic clusters and not only for alkaline ones.  相似文献   

14.
The plasmonic properties of self-assembled layers of rod- and branched-shaped gold nanoparticles were investigated using optical techniques. Nanoparticles were synthesized by a surfactant-guided, seed-mediated growth method. The layers were obtained by gradual assembly of nanoparticles at the interface between a polar and a nonpolar solvent and were transferred to a glass slide. Polarization and angle-dependent extinction measurements showed that the layers made of gold nanorods were governed by an effective medium response. The response of the layers made by branched gold particles was characterized by random light scattering. Microscopic mapping of the spatial mode structure demonstrates a uniform optical response of the nanoparticle layers down to a submicrometer length scale.  相似文献   

15.
Highly dispersed silver nanoparticles embedded in mesoporous thin films (MTFs) have been synthesized by modification of the interior surface of mesoporous silica with ethylenediamine moieties, which provided the coordination sites for the Ag ions, and subsequent reduction under hydrogen atmosphere. TEM observations show the mesoporous parent films have effectively controlled the growth of the synthesized silver nanoparticles. The composite films had an ultrafast nonlinear response time, as fast as 200 fs, and a third-order nonlinear optical susceptibility of 0.94 × 10?10 esu, which was enhanced by the local field enhancement effect that was present when the silver nanoparticles were embedded in the surrounding dielectric matrix. The origin of the ultrafast nonlinear response and the enhanced nonlinearity of the composite films are attributed to the intraband transition of the free electrons near the Fermi surface of the incorporated silver nanoparticles.  相似文献   

16.
A novel method for the preparation of thin films of Ag nanoparticles is reported. Using mercaptoacetic acid as the stabilizing agent, AgI nanoparticles were prepared in aqueous solution. And based on electrostatic interactions, the thiol-passivated AgI nanoparticles were assembled in a self-assembled film by alternative deposition with a cationic polyelectrolyte. Then the AgI nanoparticles in the composite film were reduced by NaBH(4), which resulted in the formation of a thin film of Ag nanoparticles. UV-visible spectra and X-ray photoelectron spectroscopy data confirmed the transformation from AgI to Ag. Atomic force microscopy (AFM) showed that the formed Ag nanoparticles distributed on the film homogeneously. Surface-enhanced Raman spectroscopy (SERS) measurement indicated that the prepared thin films could be used as effective SERS substrates. The reduction process was also carried out by UV light at selective surface regions, which resulted in the formation of patterned nanoparticle arrays.  相似文献   

17.
Modeling of intermolecular forces is a central theme in the physical sciences. The prototypical heterogeneous catalysis system, CO/Pt(111), is an extensively studied example where strong pairwise repulsive forces between the CO molecules have been used to explain the observed structure and dynamics. No direct measurements of these forces were available; yet, they offered a natural way of explaining various macroscopic observations assuming a separable adsorbate-substrate interaction and pairwise adsorbate-adsorbate interactions. In the present study, we measure intermolecular forces by following CO motion on a microscopic scale. The uncorrelated dynamics we observe throughout the coverage range of the measurements excludes the existence of the strong pairwise forces previously suggested. The increase in the rate of uncorrelated motion is explained by a nonlocal modification of the adsorbate-substrate interaction, reflecting a many-body system that cannot be described by the standard separable interaction approach.  相似文献   

18.
Intensity anomalies (magic numbers) have been observed in the mass spectra of sodium clusters containing up to 22 000 atoms. For small clusters (Na n ,n≤1500) the anomalies appear to be due to the filling of electronic shells (groups of subshells having the same energy). The shells can be characterized rather well by a pseudoquantum-number, indicating the possible existence of a symmetry higher than spherical. The mass spectra of larger clusters (1500≤n≤22 000) are well explained by the completion of icosahedral or cuboctahedral shells of atoms. The fact that the two types of shells (electron and atom) occur in distinct and non-overlapping size intervals might indicate the existence of a “liquid” to “solid” transition in going from small to large clusters.  相似文献   

19.
Here we report the first unambiguous identification of the chemical structures of the precursor species involving metal (Au and Ag) ions and Te-containing ligands in the Brust-Schiffrin syntheses of the respective metal nanoparticles, through which the different reaction pathways involved are delineated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号