首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A MnII chelating dendrimer was prepared as a contrast agent for MRI applications. The dendrimer comprises six tyrosine‐derived [Mn(EDTA)(H2O)]2? moieties coupled to a cyclotriphosphazene core. Variable temperature 17O NMR spectroscopy revealed a single water co‐ligand per MnII that undergoes fast water exchange (kex=(3.0±0.1)×108 s?1 at 37 °C). The 37 °C per MnII relaxivity ranged from 8.2 to 3.8 mM ?1 s?1 from 0.47 to 11.7 T, and is sixfold higher on a per molecule basis. From this field dependence a rotational correlation time was estimated as 0.45(±0.02) ns. The imaging and pharmacokinetic properties of the dendrimer were compared to clinically used [Gd(DTPA)(H2O)]2? in mice at 4.7 T. On first pass, the higher per ion relaxivity of the dendrimer resulted in twofold greater blood signal than for [Gd(DTPA)(H2O)]2?. Blood clearance was fast and elimination occurred through both the renal and hepatobiliary routes. This MnII containing dendrimer represents a potential alternative to Gd‐based contrast agents, especially in patients with chronic kidney disease where the use of current Gd‐based agents may be contraindicated.  相似文献   

2.
A bimodal magnetic resonance imaging contrast agent, TPP‐M‐Gd, was developed by modifying tetraphenylporphyrin (TPP) with a small dendritic molecule as a ligand (M) to chelate gadolinium (Gd) ions. The ligand featured four carboxylate groups, which contributed to good water solubility and a strong combination with metal ions. The longitudinal relaxivity (R1) of the resulting agent was calculated to be 12.45 mM?1 s?1, which is much higher than that of DTPA‐Gd (4.49 mM?1 s?1). The magnetic resonance imaging experiments showed that the newly synthesized contrast agent could enhance T1‐weighted magnetic resonance imaging quality both in vitro and in vivo. In addition, TPP‐M‐Gd exhibited good fluorescent property as shown in cell imaging experiments. The cytotoxicity of TPP‐M‐Gd was even better than that of clinically approved DTPA‐Gd, which makes it a promising dual‐functional medical imaging agent to provide more detailed information about biological and disease‐related events.  相似文献   

3.
The objective of this work was the synthesis of serum albumin targeted, GdIII‐based magnetic resonance imaging (MRI) contrast agents exhibiting a strong pH‐dependent relaxivity. Two new complexes ( Gd‐glu and Gd‐bbu ) were synthesized based on the DO3A macrocycle modified with three carboxyalkyl substituents α to the three ring nitrogen atoms, and a biphenylsulfonamide arm. The sulfonamide nitrogen coordinates the Gd in a pH‐dependent fashion, resulting in a decrease in the hydration state, q, as pH is increased and a resultant decrease in relaxivity (r1). In the absence of human serum albumin (HSA), r1 increases from 2.0 to 6.0 mM ?1 s?1 for Gd‐glu and from 2.4 to 9.0 mM ?1 s?1 for Gd‐bbu from pH 5 to 8.5 at 37 °C, 0.47 T, respectively. These complexes (0.2 mM ) are bound (>98.9 %) to HSA (0.69 mM ) over the pH range 5–8.5. Binding to albumin increases the rotational correlation time and results in higher relaxivity. The r1 increased 120 % (pH 5) and 550 % (pH 8.5) for Gd‐glu and 42 % (pH 5) and 260 % (pH 8.5) for Gd‐bbu . The increases in r1 at pH 5 were unexpectedly low for a putative slow tumbling q=2 complex. The Gd‐bbu system was investigated further. At pH 5, it binds in a stepwise fashion to HSA with dissociation constants Kd1=0.65, Kd2=18, Kd3=1360 μM . The relaxivity at each binding site was constant. Luminescence lifetime titration experiments with the EuIII analogue revealed that the inner‐sphere water ligands are displaced when the complex binds to HSA resulting in lower than expected r1 at pH 5. Variable pH and temperature nuclear magnetic relaxation dispersion (NMRD) studies showed that the increased r1 of the albumin‐bound q=0 complexes is due to the presence of a nearby water molecule with a long residency time (1–2 ns). The distance between this water molecule and the Gd ion changes with pH resulting in albumin‐bound pH‐dependent relaxivity.  相似文献   

4.
A highly rigid open‐chain octadentate ligand (H4cddadpa) containing a diaminocylohexane unit to replace the ethylenediamine bridge of 6,6′‐[(ethane‐1,2 diylbis{(carboxymethyl)azanediyl})bis(methylene)]dipicolinic acid (H4octapa) was synthesized. This structural modification improves the thermodynamic stability of the Gd3+ complex slightly (log KGdL=20.68 vs. 20.23 for [Gd(octapa)]?) while other MRI‐relevant parameters remain unaffected (one coordinated water molecule; relaxivity r1=5.73 mm ?1 s?1 at 20 MHz and 295 K). Kinetic inertness is improved by the rigidifying effect of the diaminocylohexane unit in the ligand skeleton (half‐life of dissociation for physiological conditions is 6 orders of magnitude higher for [Gd(cddadpa)]? (t1/2=1.49×105 h) than for [Gd(octapa)]?. The kinetic inertness of this novel chelate is superior by 2–3 orders of magnitude compared to non‐macrocyclic MRI contrast agents approved for clinical use.  相似文献   

5.
[Gd(DTPA‐BMA)] is the principal constituent of Omniscan, a magnetic resonance imaging (MRI) contrast agent. In body fluids, endogenous ions (Zn2+, Cu2+, and Ca2+) may displace the Gd3+. To assess the extent of displacement at equilibrium, the stability constants of DTPA‐BMA3? complexes of Gd3+, Ca2+, Zn2+, and Cu2+ have been determined at 37 °C in 0.15 M NaCl. The order of these stability constants is as follows: GdL≈CuL>ZnL?CaL. Applying a simplified blood plasma model, the extent of dissociation of Omniscan (0.35 mM [Gd(DTPA‐BMA)]) was found to be 17 % by the formation of Gd(PO4), [Zn(DTPA‐BMA)]? (2.4 %), [Cu(DTPA‐BMA)]? (0.2 %), and [Ca(DTPA‐BMA)]? (17.7 %). By capillary electrophoresis, the formation of [Ca(DTPA‐BMA)]? has been detected in human serum spiked with [Gd(DTPA‐BMA)] (2.0 mM ) at pH 7.4. Transmetallation reactions between [Gd(DTPA‐BMA)] and Cu2+ at 37 °C in the presence of citrate, phosphate, and bicarbonate ions occur by dissociation of the complex assisted by the endogenous ligands. At physiological concentrations of citrate, phosphate, and bicarbonate ions, the half‐life of dissociation of [Gd(DTPA‐BMA)] was calculated to be 9.3 h at pH 7.4. Considering the rates of distribution and dissociation of [Gd(DTPA‐BMA)] in the extracellular space of the body, an open two‐compartment model has been developed, which allows prediction of the extent of dissociation of the GdIII complex in body fluids depending on the rate of elimination of the contrast agent.  相似文献   

6.
Two N‐2‐hydroxy‐1‐phenylethyl and N‐2‐hydroxy‐2‐phenylethyl derivatives of DTPA (3,6,9‐tri(carboxymethyl)‐3,6,9‐triazaundecanedioic acid), DTPA‐H1P = 3,9‐di(carboxymethyl)‐6‐2‐hydroxy‐1‐phenylethyl‐3,6,9‐triazaundecanedioic acid, and DTPA‐H2P = 3,9‐di(carboxymethyl)‐6‐2‐hydroxy‐2‐phenylethyl‐3,6,9‐triazaundecanedioic acid were synthesized. Their protonation constants were determined by Potentiometric titration in 0.10 M Me4NNO3 and by NMR pH titration at 25.0 ± 0.1°C. The formations of lanthanide(III), copper(II), zinc(II) and calcium(II) complexes were investigated quantitatively by potentiometry. The stability constant for Gd(III) complex is larger than those for Ca(II), Zn(II) and Cu(II) complexes with these two ligands. The selectivity constants and modified selectivity constants of the DTPA‐H1P and DTPA‐H2P for Gd(III) over endogenously available metal ions were calculated. Comparing pM values at physiological pH 7.4 assesses effectiveness of these two ligands in binding divalent and trivalent metal ions in biological media. The observed water proton relaxivity values of [Gd(DTPA‐H1P)]? and [Gd(DTPA‐H2P)]? became constant with respect to pH changes over the range of 4‐10. 17O NMR shifts showed that the [Dy(DTPA‐H1P)]? and [Dy(DTPA‐H2P)]? complexes at pH 6.30 had 1.91 and 2.28 inner‐sphere water molecules, respectively. Water proton spin‐lattice relaxation rates of [Gd(DTPA‐H1P)]? and [Gd(DTPA‐H2P)]? complexes were also consistent with the inner‐sphere Gd(III) coordination.  相似文献   

7.
The three novel pyridine‐containing 12‐membered macrocyclic ligands 1 – 3 were synthesized. The coordinating arms are represented by three acetate moieties in 1 and 3 and by one acetate and two phosphonate moieties in 2 . In all three ligands, the acetate arm in the distal position is substituted, with a benzyl group in 1 and 2 and with an arylmethyl moiety in 3 . The relaxivities r1p (20 MHz, 25°) of GdIII complexes are: GD?1 , r1p=8.3 mM ?1 s?1; GD?2 , r1p8.1 mM ?1 s?1; Gd?3 , r1p10.5 mM ?1 s?1. 1H‐NMRD and 17O‐NMR T2 data show that Gd?1 and Gd?3 contain two H2O molecules in the inner sphere, whereas the presence of two phosphonate arms allows the coordination of only one H2O molecule in Gd?2 . Interestingly, the exchange lifetime of coordinated H2O in the three complexes is similar in spite of the difference in the coordination number of the GdIII ion (i.e., 9 in Gd?1 and Gd?3 , and 8 in Gd?2 ). 1H‐Relaxometric measurements at different pH and in the presence of lactate and oxalate were carried out to get some insight into the formation of ternary complexes from Gd?1 and Gd?3 . Finally, it was found that binding to human‐serum albumin (HSA) of Gd?1 and Gd?2 , though weak, yields limited relaxivity enhancements, likely as a consequence of effects on the hydration sphere caused by donor atoms on the surface of the protein.  相似文献   

8.
Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a GdIII‐chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd‐DTPA‐dopamine‐bisphytanyl (Gd‐DTPA‐Dop‐Phy), which is readily capable of self‐assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature 17O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by 1H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari–Szabo “model‐free” approach. High payloads of GdIII ions in the liposomal nanoassemblies made solely from the Gd‐DTPA‐Dop‐Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent.  相似文献   

9.
The structural and relaxometric characterization of a novel class of supramolecular aggregates, as potential tumor‐specific contrast agents in magnetic resonance imaging (MRI), is reported. The aggregates are based on a new monomer with an upsilon shape (MonY) that contains, in the same molecule, all three fundamental tasks that are required: 1) a hydrophobic moiety that allows the formation of supramolecular aggregates; 2) the bioactive CCK8 peptide for target recognition; and 3) a chelating agent able to give stable gadolinium complexes. As indicated by dynamic light scattering and small‐angle neutron scattering (SANS) measurements, MonY and its gadolinium complex MonY(Gd) aggregate in aqueous solution to give ellipsoidal micelles with a ratio between the micellar axes of ≈1.7 and an aggregation number Nagg of ≈30. There are no differences in the aggregation behavior of MonY and MonY(Gd), which indicates that the presence of metal ions, and therefore the reduction of the net charge, does not influence the aggregation behavior. When MonY or MonY(Gd) are blended with dioleoyl phosphatidylcholine (DOPC), the aggregation behavior is dictated by the tendency of DOPC to give liposomes. Only when the amount of MonY or MonY(Gd) is higher than 20 % is the coexistence of liposomes and micelles observed. The thickness d of the bilayer is estimated by SANS to be ≈35–40 Å, whereas cryogenic transmission electron microscopy images show that the diameter of the liposomes ranges from ≈50 to 150 nm. Self‐assembling micelles of MonY(Gd) present high relaxivity values (r1p=15.03 mM ?1 s?1) for each gadolinium complex in the aggregate. Liposomes containing MonY(Gd) inserted in the DOPC bilayer at a molar ratio of 20:80 present slightly lower relaxivity values (r1p=12.7 mM ?1 s?1), independently of their internal or external position in the liposome.  相似文献   

10.
The analysis of 17O NMR transverse relaxation rates and EPR transverse electronic relaxation rates for aqueous solutions of the four DTPA‐like (DTPA = diethylenetriamine‐N,N,N,N″,N″‐pentaacetic acid) complexes, [Gd(DTPA‐PY)(H2O)]? (DTPA‐PY = N′‐(2‐pyridylmethyl)), [Gd(DTPA‐HP)(H2O)2]? (DTPA‐HP = N′‐(2‐hydroxypropyl)), [Gd(DTPA‐H1P)(H2O)2]? (DTPA‐H1P = N′‐(2‐hydroxy‐1‐phenylethyl)) and [Gd(DTPA‐H2P)(H2O)2] (DTPA‐H2P = N′‐(2‐hydroxy‐2‐phenylethyl)), at various temperatures allows us to understand the water exchange dynamics of these four complexes. The water‐exchange lifetime (τM) parameters for [Gd(DTPA‐PY)(H2O)]?, [Gd(DTPA‐HP)(H2O)2]?, [Gd(DTPA‐H1P)(H2O)2]? and [Gd(DTPA‐H2P)(H2O)2] are of 585, 98, 163, and 69 ns, respectively. Compared with [Gd(DTPA)(H2O)]2? (τM = 303 ns), the τM value of [Gd(DTPA‐PY)(H2O)]? is slightly higher, but the other three complexes values are significantly lower than those of [Gd(DTPA)(H2O)]2?. This difference is explained by the fact that the gadolinium(III) complexes of DTPA‐HP, DTPA‐H1P, and DTPA‐H2P have two inner‐sphere waters. The 2H longitudinal relaxation rates of the labeled diamagnetic lanthanum complex allow the calculation of its rotational correlation time (τR). The τR values calculated for DTPA‐PY, DTPA‐HP, DTPA‐H1P, and DTPA‐H2P are of 127, 110, 142 and 147 ps, respectively. These four values are higher than the value of [La(DTPA)]2? (τR = 103 ps), because the rotational correlation time is related to the magnitude of its molecular weight.  相似文献   

11.
In our efforts of finding new specific contrast agents of higher relaxivity and selectivity, we have prepared the two new benzyl‐functionalized DTPA (‘diethylenetriamine pentaacetate’) gadolinium complexes (S)‐ 3 and (R,S)‐ 4 , and compared their properties with those of the known regioisomers (S)‐ 2 and (S)‐ 1 . The theoretical fitting of the reduced transverse relaxation rates of the 17O‐nucleus of H2O gave values for the water‐residence time (τM) of 86–143 ns at 310 K, values that are not limiting the proton relaxivity at body temperature. 1H‐NMRD (nuclear magnetic‐relaxation dispersion) Profiles showed that the relaxivity of 1 – 4 (r1=4.3–5.1 s?1 mM ?1 at 20 MHz and 310 K) is higher than for the Gd? DTPA parent compound 5 . Transmetallation assessment demonstrated that all substituted compounds, except for (S)‐ 2 , are more stable than 5 . The highest stability towards Zn2+‐induced transmetallation was achieved with complexes 3, 1 , and 4 (in decreasing order). Apparently, the steric hindrance of the benzyl substituents in positions 5, 4, and 2, respectively, favorably reduces the accessibility of Zn ions. From a synthetic point of view, 4‐substituted DTPA complexes of type 1 are more readily accessible than 5‐substituted compounds of type 3 . Therefore, the former seem to be superior for linking substituted DTPA complexes to macromolecules or specific vectors.  相似文献   

12.
Polylactic acid (PLA) nanoparticles coated with Gd(III)‐based metallosurfactants (MS) are prepared using a simple and rapid one‐step method, flash nanoprecipitation (FNP), for magnetic resonance imaging (MRI) applications. By co‐assembling the Gd(III)‐based MS and an amphiphilic polymer, methoxy poly(ethylene glycol)‐b‐poly(?‐caprolactone) (mPEG‐b‐PCL), PLA cores were rapidly encapsulated to form biocompatible T1 contrast agents with tunable particle size and narrow size distribution. The hydrophobic property of Gd(III)‐based MS were finely tuned to achieve their high loading efficiency. The size of the nanoparticles was easily controlled by tuning the stream velocity, Reynolds number and the amount of the amphiphilic block copolymer during the FNP process. Under the optimized condition, the relaxivity of the nanoparticles was achieved up to 35.39 mM?1 s?1 (at 1.5 T), which is over 8 times of clinically used MRI contrast agents, demonstrating the potential application for MR imaging.  相似文献   

13.
The self‐diffusion (Dc) coefficients of various lanthanum(III) diamagnetic analogues of open‐chain and macrocyclic complexes of gadolinium used as MRI contrast agents were determined in dilute aqueous solutions (3–31 mM ) by pulsed‐field‐gradient (PFG) high‐resolution 1H‐NMR spectroscopy. The self‐diffusion coefficient of H2O (Dw) was obtained for the same samples to derive the relative diffusion constant, a parameter involved in the outersphere paramagnetic‐relaxation mechanism. The results agree with an averaged relative diffusion constant of 2.5 (±0.1)×10?9 and of 3.3 (±0.1)×10?9 m2 s?1 at 25 and 37°, respectively, for 'small' contrast agents (Mr 500–750 g/mol), and with the value of bulk H2O (2.2×10?9 and 2.9×10?9 m2 s?1 at 25° and at 37°, respectively) for larger complexes. The use of the measured values of Dc for the theoretical fitting of proton NMRD curves of gadolinium complexes shows that the rotational correlation times (τR) are very close to those already reported. However, differences in the electronic relaxation time (τSO) at very low field and in the correlation time (τV) related to electronic relaxation were found.  相似文献   

14.
A novel MRI contrast agent, hyaluronic acid gadolinium complex (HA‐Gd‐DTPA) nanospheres, is prepared by the synthesis of hyaluronic acid gadolinium complexes and their assembly. The physicochemical properties are characterized, and the lymphatic targeting in vitro and in vivo are also evaluated. The results show that the HA‐Gd‐DTPA nanospheres with suitable and stable physicochemical properties could be used for in vivo lymphatic targeting studies. Furthermore, the HA‐Gd‐DTPA nanospheres have obviously higher relaxation efficiency and MRI contrast between blood vessel and lymph vessel in rabbit than that of Magnevist. Thus, the novel MRI contrast agent can be taken up selectively by lymphatic system and used as a potential MRI contrast agents in lymphatic system.  相似文献   

15.
Six diethylene triamine pentaacetic acid (DTPA) bisamide derivatives functionalized with p‐toluidine (DTPA‐BTolA), 6‐aminocoumarin (DTPA‐BCoumA), 1‐naphthalene methylamine (DTPA‐BNaphA), 4‐ethynylaniline (DTPA‐BEthA), p‐dodecylaniline (DTPA‐BC12PheA) and p‐tetradecyl‐aniline (DTPA‐BC14PheA) were coordinated to dysprosium(III) and the magnetic and optical properties of the complexes were examined in detail. The complexes consisting of amphiphilic ligands (DTPA‐BC12PheA and DTPA‐BC14PheA) were further assembled into mixed micelles. Upon excitation into the ligand levels, the complexes display characteristic DyIII emission with quantum yields of 0.3–0.5 % despite the presence of one water molecule in the first coordination sphere. A deeper insight into the energy‐transfer processes has been obtained by studying the photophysical properties of the corresponding GdIII complexes. Since the luminescence quenching effect is decreased by the intervention of non‐ionic surfactant, quantum yields up to 1 % are obtained for the micelles. The transverse relaxivity r2 per DyIII ion at 500 MHz and 310 K reaches a maximum value of 27.4 s?1 mM ?1 for Dy‐DTPA‐BEthA and 36.0 s?1 mM ?1 for the Dy‐DTPA‐BC12PheA assemblies compared with a value of 0.8 s?1 mM ?1 for Dy‐DTPA. The efficient T2 relaxation, especially at high magnetic field strengths, is sustained by the high magnetic moment of the dysprosium ion, the coordination of water molecules with slow water exchange kinetics and long rotational correlation times. These findings open the way to the further development of bimodal optical and magnetic resonance imaging probes starting from single lanthanide compounds.  相似文献   

16.
1H‐NMR was previously used to analyze the interaction between peptides (E3 and R826) selected by phage display to target apoptotic cells and phospholipidic models of these cells. In order to avoid the use of apoptotic cells and to obtain a fast evaluation of the efficiency of the potential MRI contrast agents obtained by grafting these peptides and their scramble analogs on a paramagnetic gadolinium complex, their proton relaxometric behavior was investigated in the presence of micelles mimicking healthy and apoptotic cells. Their preferential interaction with 1,2‐dipalmitoyl‐sn‐glycero‐3‐phospho‐l ‐serine micelles mimicking apoptotic cells as compared with 1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphocholine micelles modeling healthy cells was shown by nuclear magnetic relaxation dispersion profiles and the enhancement of the transverse proton relaxation rates at 60 MHz. The association constant values confirm the stronger interaction of the selected conjugated peptides (Ka Gd‐PMN‐E3(gadolinium 2,2′,2′′,2′′′‐[((4‐carboxy)pyridine‐2,6‐diyl)bis(methylenenitrilo)]‐tetrakis acetate) grafted with E3 peptide): 2.43 104 m ?1; Ka Gd‐DTPA‐R826(gadolinium ((1‐p‐isothiocyanatobenzyl)‐diethylenetriaminepentaacetate) grafted with R826 peptide): 2.91 104 m ?1) as compared with their conjugated scrambles (Ka Gd‐PMN‐E3sc(gadolinium 2,2′,2′′,2′′′‐[((4‐carboxy)pyridine‐2,6‐diyl)bis(methylenenitrilo)]‐tetrakis acetate) grafted with E3 scramble peptide): 0.18 104 m ?1; Ka Gd‐DTPA‐R826sc(gadolinium ((1‐p‐isothiocyanatobenzyl)‐diethylenetriaminepentaacetate) grafted with R826 scramble peptide): 0.32 104 m ?1) even if the conjugation of E3 and R826 seems to decrease their interaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A novel ligand (H2L), diethylenetriamine-N,N′,N′′-triacetylisoniazide N,N′′-bisacetic acid, and its four non-ion transition metal complexes, ML · nH2O (M = Mn, n = 4; M = Co, Ni, n = 2; M = Cu, n = 1), have been synthesized and characterized on the basis of elemental analysis, molar conductivity, 1H-NMR, FAB-MS, TG-DTA analysis and IR spectrum. In addition, relaxivity (R1) of the complexes was determined, the relaxivity of MnL, CoL, NiL, CuL as well as Gd(DTPA)2− used as a control are 6.94, 2.79, 2.52, 1.59 and 4.34 l mmol−1 s−1, respectively. The relaxivity of MnL is larger than that of Gd(DTPA)2−. The results show that the complex of MnL may be a potential MRI contrast agent.  相似文献   

18.
Tissue hypoxia occurs in pathologic conditions, such as cancer, ischemic heart disease and stroke when oxygen demand is greater than oxygen supply. An imaging method that can differentiate hypoxic versus normoxic tissue could have an immediate impact on therapy choices. In this work, the gadolinium(III) complex of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with a 2‐nitroimidazole attached to one carboxyl group via an amide linkage was prepared, characterized and tested as a hypoxia‐sensitive MRI agent. A control complex, Gd(DO3A‐monobutylamide), was also prepared in order to test whether the nitroimidazole side‐chain alters either the water proton T1 relaxivity or the thermodynamic stability of the complex. The stabilities of these complexes were lower than that of Gd(DOTA)? as expected for mono‐amide derivatives. The water proton T1 relaxivity (r1), bound water residence lifetime (τM) and rotational correlation time (τR) of both complexes was determined by relaxivity measurements, variable temperature 17O NMR spectroscopy and proton nuclear magnetic relaxation dispersion (NMRD) studies. The resulting parameters (r1=6.38 mM ?1 s?1 at 20 MHz , τM=0.71 μs, τR=141 ps) determined for the nitroimidazole derivative closely parallel to those of other Gd(DO3A‐monoamide) complexes of similar molecular size. In vitro MR imaging experiments with 9L rat glioma cells maintained under nitrogen (hypoxic) versus oxygen (normoxic) gas showed that both agents enter cells but only the nitroimidazole derivative was trapped in cells maintained under N2 as evidenced by an approximately twofold decrease in T1 measured for hypoxic cells versus normoxic cells exposed to this agent. These results suggest that the nitroimidazole derivative might serve as a molecular reporter for discriminating hypoxic versus normoxic tissues by MRI.  相似文献   

19.
The kinetics of the metal exchange reactions between open‐chain Gd(DTPA)2? and Gd(DTPA‐BMA), macrocyclic Gd(DOTA)? and Gd(HP‐DO3A) complexes, and Cu2+ ions were investigated in the presence of endogenous citrate, phosphate, carbonate and histidinate ligands in the pH range 6–8 in NaCl (0.15 M ) at 25 °C. The rates of the exchange reactions of Gd(DTPA)2? and Gd(DTPA‐BMA) are independent of the Cu2+ concentration in the presence of citrate and the reactions occur via the dissociation of Gd3+ complexes catalyzed by the citrate ions. The HCO3?/CO32? and H2PO4? ions also catalyze the dissociation of complexes. The rates of the dissociation of Gd(DTPA‐BMA), catalyzed by the endogenous ligands, are about two orders of magnitude higher than those of the Gd(DTPA)2?. In fact near to physiological conditions the bicarbonate and carbonate ions show the largest catalytic effect, that significantly increase the dissociation rate of Gd(DTPA‐BMA) and make the higher pH values (when the carbonate ion concentration is higher) a risk‐factor for the dissociation of complexes in body fluids. The exchange reactions of Gd(DOTA)? and Gd(HP‐DO3A) with Cu2+ occur through the proton assisted dissociation of complexes in the pH range 3.5–5 and the endogenous ligands do not affect the dissociation rates of complexes. More insights into the interaction scheme between Gd(DTPA‐BMA) and Gd(DTPA)2? and endogenous ligands have been obtained by acquiring the 13C NMR spectra of the corresponding diamagnetic Y(III)‐complexes, indicating the increase of the rates of the intramolecular rearrangements in the presence of carbonate and citrate ions. The herein reported results may have implications in the understanding of the etiology of nephrogenic systemic fibrosis, a rare disease that has been associated to the administration of Gd‐containing agents to patients with impaired renal function.  相似文献   

20.
Lanthanide‐containing nanoscale particles have been widely explored for various biomedical purposes, however, they are often prone to metal leaching. Here we have created a new coordination polymer (CP) by applying, for the first time, a stable GdIII chelate as building block in order to prevent any fortuitous release of free lanthanide(III) ion. The use of the Gd‐DOTA‐4AmP complex as a design element in the CP allows not only for enhanced relaxometric properties (maximum r1=16.4 mm ?1 s?1 at 10 MHz), but also for a pH responsiveness (Δr1=108 % between pH 4 and 6.5), beyond the values obtained for the low molecular weight Gd‐DOTA‐4AmP itself. The CP can be miniaturised to the nanoscale to form colloids that are stable in physiological saline solution and in cell culture media and does not show cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号