首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jafarpour L  Nolan SP 《Organic letters》2000,2(25):4075-4078
Polymer-supported ruthenium catalysts (PCy(3))(2)Ru(=C(H)Ph)Cl(2), (PCy(3))Ru(IMes)(=C(H)Ph)Cl(2), and (PCy(3))Ru(SIMes)(=C(H)Ph)Cl(2), where IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene and SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene, have been prepared and found to be effective "boomerang" catalysts for ring-closing metathesis. They are recyclable, show comparable or better reactivity than their homogeneous counterparts, tolerate functional groups, and perform very well with dienes and moderately well with highly hindered substrates.  相似文献   

2.
1-n-Butyl-3-methylimidazolium hexafluorophosphate room-temperature ionic liquid is not only suitable as a medium for the preparation and stabilization of iridium nanoparticles but also ideal for the generation of recyclable biphasic catalytic systems for hydrogenation reactions. Thus, Ir(0) nanoparticles with a mean diameter of 2 nm have been prepared by reduction of Ir(I) dissolved in the ionic liquid with H2. This catalytic solution can be reused several times for the biphasic hydrogenation of olefins under mild reaction conditions.  相似文献   

3.
Nickel nanoparticles are prepared in the interlamellar spaces of K10-Montmorillonite clay by chemical reduction at moderate temperatures. These clay entrapped nickel nanoparticles are characterized by UV-vis, powder XRD, EDX and HRTEM studies. The resultant ecofriendly supramolecular assembly with nickel content (2.84 wt %) has good catalytic efficiency in hydrogenation of alkenes and alkynes with hydrazine as a reducing agent in ethanol medium. Advantages of the present study include absence of an external hydrogen source, catalyst reusability and a green medium.  相似文献   

4.
<正>Rh nanoparticles stabilized by PEG-substituted triphenyl-phosphine(PETPP,P[C_6H_4-p-(OCH_2CH_2)_nOH]_3) combining double stabilization effects demonstrated high activity and good recyclability in aqueous biphasic hydrogenation of benzene.The value of turnover frequency(TOF) was 3333 h~(-1).Furthermore,the rhodium nanoparticle catalyst could be easily recycled for five times without loss in activity.  相似文献   

5.
A novel core-shell structural Fe(3)O(4)@MgAl-LDH@Au nanocatalyst was simply synthesized via supporting Au nanoparticles on the MgAl-LDH surface of Fe(3)O(4)@MgAl-LDH nanospheres. The catalyst exhibited excellent activity for the oxidation of 1-phenylethanol, and can be effectively recovered by using an external magnetic field.  相似文献   

6.
Wu L  Li BL  Huang YY  Zhou HF  He YM  Fan QH 《Organic letters》2006,8(16):3605-3608
[reaction: see text] Phosphine dendrimer-stabilized palladium nanoparticles were synthesized and found to be highly effective for Suzuki coupling reactions, affording good to excellent product yields, high turnover number (up to 65,000), and excellent reusability (up to 9 catalytic runs). Furthermore, these Pd nanoparticles are efficient and selective catalysts for hydrogenations.  相似文献   

7.
8.
In this work, we explore the reactivity induced by coordination of a CO molecule trans to the Ru-benzylidene bond of a prototype Ru-olefin metathesis catalyst bearing a N-heterocyclic carbene (NHC) ligand. DFT calculations indicate that CO binding to the Ru center promotes a cascade of reactions with very low-energy barriers that lead to the final crystallographically characterized product, in which the original benzylidene group has attacked the proximal aromatic ring of the ligand leading to a cycloheptatriene ring through a Buchner ring expansion. In conclusion, the overall mechanism is best described as a carbene insertion into a C–C bond of the aromatic N-substituent of the NHC ligand, forming a cyclopropane ring. This cyclopropanation step is followed by a Buchner ring expansion reaction, leading to the experimentally observed product presenting a cycloheptatriene ring.  相似文献   

9.
Development of highly active and recyclable catalysts for selective hydrogenation of nitroarenes to amines in water at room temperature is always a challenge in chemical industry. This study reports a facile in situ method for synthesis of ultrafine palladium and platinum nanoparticles (NPs) stabilized by poly (amic acid) salt (PAAS) and their potential as catalysts for hydrogenation of nitroarenes with sodium borohydride or molecular hydrogen as reductant in water at room temperature. In the reduction of 4‐nitrophenol to 4‐aminophenol by sodium borohydride, the activity parameters of PdNPs–PAAS and PtNPs–PAAS catalyst is 6.66 × 103 and 5.58 × 103 s?1 M?1 respectively. In the hydrogenation of diverse nitroarenes under atmospheric hydrogen pressure, PdNPs–PAAS shows high activity but poor selectivity toward desired amines in some cases, while PtNPs–PAAS shows both high activity and high selectivity for selective hydrogenation of nitroarenes to corresponding anilines. The high efficiency of nanocatalyst is due to the quasi‐homogeneous dispersion of metal NPs and synergistic effects between metal NPs and PAAS. In addition, nanocatalyst can be easily recovered with pH‐sensibility of PAAS and reused at least six times without significant loss of catalytic activities.  相似文献   

10.
《Solid State Sciences》2012,14(9):1256-1262
A palladium-based catalyst supported on thiol-modified superparamagnetic nanoparticles was successfully prepared by co-precipitation method. These magnetic nanomaterials were characterized by elemental analysis (EA), inductively coupled plasma (ICP), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), fourier transform-infrared (FT-IR), thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The conversions of various aromatic nitro and unsaturated compounds can receive a really high yield with the existence of magnetic nanomaterials. The turn-over frequency (TOF) can be 66.46 h−1 in ethanol under a H2 atmosphere at room temperature. In this paper, the conversions of aromatic nitro bearing a variety of substituents were 93.56–100%, moreover, the catalyst afforded over 90% yield in the reducing unsaturated compounds. Another advantage is that the magnetite nanoparticles modified by thiol group can be separated just through the external magnetic force and can be reused atleast ten times without any significant loss in activity.  相似文献   

11.
Maria Mifsud 《Tetrahedron》2010,66(5):1040-16910
The previously described catalyst system for the aerobic oxidation of alcohols, comprising palladium(II) acetate in combination with neocuproine in a 1:1 mixture of water and a water-miscible cosolvent such as ethylene carbonate or dimethylsulfoxide, was shown to involve palladium nanoparticles as the active catalyst. The latter are formed in situ or can be preformed by reduction of the palladium-neocuproine complex with hydrogen and they are stabilized by both the neocuproine ligand and the cosolvent. This catalyst system was successfully used for the selective aerobic oxidation of the steroidal secondary alcohols, nandrolone and 5α-pregnan-3α-ol-20-one, to the corresponding ketones.  相似文献   

12.
先将Pd纳米粒子负载于SiO2球表面上,再经包裹、刻蚀、硅烷化修饰,得到氟丙基功能化“蛋黄”型结构催化剂.并采用X射线衍射、透射电镜、N2吸附-脱附和热重等对催化剂进行了表征.结果表明,该催化剂在水相烯烃加氢反应中表现出较高的活性,明显高于未经氟丙基修饰的同类催化剂.该催化剂通过离心便可实现回收,多次循环使用后仍保持较高的活性.  相似文献   

13.
A simple, efficient, and general approach was developed to selectively deposit noble metal (Pt, Pd, or PtPd) nanoparticles 3-5?nm in size on magnetite/graphene composites. The biomolecule L-lysine with two kinds of functional groups (NH(2) and COOH) played the key role of connecter between noble metals and Fe(3)O(4)/graphene composites. These composites were characterized by TEM, XRD, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The results indicated that the noble metals are mostly dispersed on the magnetite surfaces of the composites. The as-obtained composites are ideal recyclable catalysts for liquid-phase reactions owing to their stability and efficient magnetic separation. Among these catalysts, the PtPd-based composites exhibited the highest activity and resistance to poisoning during the catalytic reduction of 4-nitrophenol to 4-aminophenol by NaBH(4). Such hybrid catalysts obtained by this simple, efficient method are expected to find use in industrial applications, where separation and recycling are critically required to reduce cost and waste production.  相似文献   

14.
Lipase enzyme was embedded within silica nanoparticles with oil-filled core-shell structure. The enzyme embedded within such architecture retained all of its activity and showed high catalytic performance both in water and in organic media with optimal stability and recyclability.  相似文献   

15.
16.
A comparison of the ethylene polymerization performance conducted with an oxo and a triphenylsilyl chromate catalyst on silica was performed. The oxo catalyst has higher activity and better comonomer response. The silylchromate catalyst has a much longer induction time and made a much broader molecular weight distribution polymer compared to the oxo analogue. Performance similar to silylchromate on silica was observed when triphenylsilanol (TPS) was added to the oxo chromium catalyst. The oxo catalyst was converted to the silyl chromate catalyst by ligand substitution. Analysis of the catalyst components when TPS was added to the oxo chrome analogue showed that bis triphenylsilyl chromate can form and be removed from the support.  相似文献   

17.
Metallic and bimetallic PdAu nanoparticles were solubilized in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (IL) by a phase-transfer method using poly(vinylpyrrolidone) (PVP) as a stabilizer. Nanoparticles were characterized by UV–vis spectroscopy and transmission electron microscopy. The bimetallic PdAu nanoparticles in the IL-phase were examined as catalysts for hydrogenation reactions; both the activity and selectivity of the hydrogenation reactions could be tuned by varying the composition of the bimetallic nanoparticles, with maximum activities seen at 1:3 Au:Pd ratios. These nanoparticles/IL catalysts were recycled and then reused for further catalytic reactions with minimal loss in activity.  相似文献   

18.
We report the synthesis, characterization, and catalytic properties of novel monodisperse SiO(2)@Pd-PAMAM core-shell microspheres containing SiO(2) microsphere cores and PAMAM dendrimer-encapsulated Pd nanoparticle (Pd-PAMAM) shells. First, SiO(2) microspheres, which were prepared by the St?ber method, were functionalized with vinyl groups by grafting their surfaces with vinyltriethoxysilane (VTS). The vinyl groups were then converted into epoxides by using m-chloroperoxybenzoic acid. Upon treatment with amine-terminated G4 poly(amidoamine) (PAMAM) dendrimers, the SiO(2)-supported epoxides underwent ring-opening and gave SiO(2)@PAMAM core-shell microspheres. Pd nanoparticles within the cores of the SiO(2)-supported PAMAM dendrimers were synthesized by letting Pd(II) ions complex with the amine groups in the cores of the dendrimers and then reducing them into Pd(0) with NaBH(4). This produced the SiO(2)@Pd-PAMAM core-shell microspheres. The presence of the different functional groups on the materials was monitored by following the changes in FTIR spectra, elemental analyses, and weight losses on thermogravimetric traces. Transmission electron microscopy (TEM) images showed the presence of Pd nanoparticles with average size of 1.56 ± 0.67 nm on the surface of the monodisperse SiO(2)@Pd-PAMAM core-shell microspheres. The SiO(2)@Pd-PAMAM core-shell microspheres were successfully used as an easily recyclable catalyst for hydrogenation of various olefins, alkynes, keto, and nitro groups, giving ~100% conversion and high turnover numbers (TONs) under 10 bar H(2) pressure, at room temperature and in times ranging from 10 min to 3 h. In addition, the SiO(2)@Pd-PAMAM core-shell microspheres were proven to be recyclable catalysts up to five times with barely any leaching of palladium into the reaction mixture.  相似文献   

19.
The gold nanoparticles with core diameter of 3.9-4.7 nm were stabilized with octanethiolate and dipyridylphosphinicamido undecanethiolate. Without varying the size of central Au cores, palladium complexes were immobilized onto these Au nanoparticles through chelation to the surface-bound dipyridyls. Hybrid catalysts of this type were dissolvable and precipitable, and their structures and reactions were investigated by solution nuclear magnetic resonance (NMR) spectroscopy with a resolution typically attained for soluble systems. These surface-bound Pd(II) complexes were highly effective catalysts for [2+2+2] alkyne cyclotrimerization reactions to give highly congested benzene rings with fairly good selectivity. The catalytic reactivity of these interphase catalysts was even higher than that of their unbound counterparts. In addition, they can be easily separated and quantitatively recovered by simple filtration. The recovered catalysts can be effectively recycled many times and their electron microscopy images and NMR spectra showed negligible difference from those of freshly prepared. The complete transformation by Au-bound Pd(II) catalyst with a loading of 4 mol % can be achieved within 1 h for most alkynes. The same catalysis can be further accelerated in ionic liquid under microwave conditions to give nearly 100% of cyclotrimerized products in minutes.  相似文献   

20.
Traditional catalysts (prepared by the reduction of a salt) of supported Cr, Mo, and W compounds have low activities for the hydrogenation of alkenes. This low activity is partly due to the difficulty in fully reducing these catalysts. The use of the zero-valent complexes Cr(CO)6, Mo(CO)6, and W(CO)6 for catalyst synthesis is described. Proper activation can yield well-dispersed and low-valent catalysts primarily containing subcarbonyl complexes which are far more active than traditional catalysts of these elements for the hydrogenation of alkenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号