首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the field of oriented‐attachment crystal growth, one‐dimensional nanocrystals are frequently employed as building blocks to synthesize two‐dimensional or large‐aspect‐ratio one‐dimensional nanocrystals. Despite recent extensive experimental advances, the underlying inter‐particle interaction in the synthesis still remains elusive. In this report, using Ag as a platform, we investigate the van der Waals interactions associated with the side‐by‐side and end‐to‐end assemblies of one‐dimensional nanorods. The size, aspect ratio, and inter‐particle separation of the Ag precursor nanorods are found to have dramatically different impacts on the van der Waals interactions in the two types of assemblies. Our work facilitates the fundamental understanding of the oriented‐attachment assembling mechanism based on one‐dimensional nanocrystals.  相似文献   

2.
A mathematical model for analyzing the van der Waals interaction between the internal aqueous droplets (W(1)) and the external aqueous phase (W(2)) of double emulsions has been established. The effects of Hamaker constants of the materials forming the system, especially those of the two different adsorbed surfactant layers with uniform density (A(1) and A(2)), on the van der Waals interaction were investigated. The overall van der Waals interaction across the oil film is a combined result of four individual parts, that is, W(1)-W(2), A(1)-A(2), W(1)-A(1), and A(2)-W(2) van der Waals interaction, and it may be either attractive or repulsive depending on many factors. It was found that the overall van der Waals interaction is dominated by the W(1)-W(2) interaction at large separation distances between the W(1)/O and O/W(2) interfaces, while it is mostly determined by the A(1)-A(2) interaction when the two interfaces are extremely close. Specifically, in the cases when the value of the Hamaker constant of the oil phase is intermediate between those of W(1) and W(2) and there is a thick oil film separating the two interfaces, a weak repulsive overall van der Waals interaction will prevail. If the Hamaker constant of the oil phase is intermediate between those of A(1) and A(2) and the two interfaces are very close, the overall van der Waals interaction will be dominated by the strong repulsive A(1)-A(2) interaction. The repulsive van der Waals interaction at such cases helps stabilize the double emulsions.  相似文献   

3.
The isoenergetic lines of van der Waals interaction between aromatic compounds and electrophilic or nucleophilic agents in parallel planes are drawn in order to detect the best approach channels for reagents in aromatic substitutions. The van der Waals interaction is comprised of the electrostatic, polarization and dispersion terms. It has been found that the channels depend on the molecules and on the positions of the centres attacked. The polarization term is shown to play a decisive role in electrophilic substitutions of phenanthrene and in nucleophilic substitutions of the pyridinium ion.  相似文献   

4.
The nature of the physical interactions between Escherichia coli JM109 and a model surface (silicon nitride) was investigated in water via atomic force microscopy (AFM). AFM force measurements on bacteria can represent the combined effects of van der Waals and electrostatic forces, hydrogen bonding, steric interactions, and perhaps ligand-receptor type bonds. It can be difficult to decouple these forces into their individual components since both specific (chemical or short-range forces such as hydrogen bonding) and nonspecific (long-range colloidal) forces may be present in the overall profiles. An analysis is presented based on the application of Poisson statistics to AFM adhesion data, to decouple the specific and nonspecific interactions. Comparisons with classical DLVO theory and a modified form of a van der Waals expression for rough surfaces were made in order to help explain the nature of the interactions. The only specific forces in the system were due to hydrogen bonding, which from the Poisson analysis were found to be -0.125 nN. The nonspecific forces of 0.155 nN represent an overall repulsive interaction. These nonspecific forces are comparable to the forces calculated from DLVO theory, in which electrostatic-double layer interactions are added to van der Waals attractions calculated at the distance of closest approach, as long as the van der Waals model for "rough" spherical surfaces is used. Calculated electrostatic-double layer and van der Waals interactions summed to 0.116 nN. In contrast, if the classic (i.e., smooth) sphere-sphere model was used to predict the van der Waals forces, the sum of electrostatic and van der Waals forces was -7.11 nN, which appears to be a large overprediction. The Poisson statistical analysis of adhesion forces may be very useful in applications of bacterial adhesion, because it represents an easy way to determine the magnitude of hydrogen bonding in a given system and it allows the fundamental forces to be easily broken into their components.  相似文献   

5.
We have studied the interaction between cefuroxime sodium (CXS) and papain at different temperatures by a fluorescence method, and confirmed that the mechanism of fluorescence quenching of CXS to papain is mainly static quenching. We also determined the binding constant K. Based on the thermodynamic functions at different temperatures, the results show that the major forces between CXS and papain are van der Waals’ forces and H bond. According to the Forster non-radiation energy transfer mechanism, we determined the binding distance between CXS and papain, and studied the confirmation effect of CXS to papain by synchronous fluorescence and UV–Vis spectroscopy. Molecular simulations show that the binding types of CXS and papain are van der Waals’ forces, hydrophobic interaction, and H-bond.  相似文献   

6.
A van der Waals surface graph is the graph defined on a van der Waals surface by the intersections of the atomic van der Waals spheres. A van der Waals shape graph has a vertex for each atom with a visible face on the van der Waals surface, and edges between vertices representing atoms with adjacent faces on the van der Waals surface. These are discrete invariants of three‐dimensional molecular shape. Some basic properties of van der Waals surface graphs are studied, including their relationship with the Voronoi diagram of the atom centres, and a class of molecular embeddings is identified for which the dual of the van der Waals surface graph coincides with the van der Waals shape graph. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The hydrodynamic interaction between a rising bubble and a sedimenting particle during microbubble flotation is considered. The effects of attractive van der Waals forces and attractive or repulsive electrostatic forces are included. A mathematical model is presented which is used to perform a trajectory analysis and to calculate collision efficiencies between the bubble and particle. It is shown that collision efficiencies and the nature of the bubble-particle interactions are strongly dependent on the relative strengths of the van der Waals and electrostatic forces and on the lengthscales over which these forces act. It is demonstrated that optimal operating conditions can be suggested to achieve efficient microbubble flotation by correctly accounting for the interaction of van der Waals, electrostatic, and hydrodynamic forces. Copyright 1999 Academic Press.  相似文献   

8.
A density-dependent local composition expression for the residual energy is derived from a generalized NRTL expression for the excess energy and the van der Waals fluid theory. Integration of this expression yields a volume-dependent expression for the Helmholtz energy from which equations of state utilizing the local composition concept are derived and which in the high-density limit contain the well-known activity coefficient models.The local composition versions of the Carnahan—Starling—van der Waals, the Redlich—Kwong—Soave and the Peng—Robinson equations of state are derived. It is further shown that the group contribution versions of the NRTL, the Wilson and the UNIQUAC excess models may be derived from the generalized NRTL expression for the residual energy when applied to groups instead of molecules.It is thus demonstrated that all current local composition activity-coefficient models can be derived from a local composition version of the van der Waals equation of state using different sets of assumptions. In the same way the van Laar, the Scatchard—Hildebrand and the Flory—Huggins activity coefficient models are obtained from the van der Waals equation of state using the original mixing rules.  相似文献   

9.
The mechanism of mutual influence of microcrystal nucleation and growth processes is proposed. In addition to the known coagulation factor, the proposed mechanism is explained by the effect of van der Waals forces on the nucleation process. A change in the frequency of nucleation, which occurs in the field of the surface forces of a formed crystal, was calculated using an adiabatic approximation. The degree of dispersity necessary for a macroscopic manifestation of the initiating effect of van der Waals forces was determined. Some simple models taking into account the effect of the proposed mechanism on the kinetics of the mass crystallization were studied, and the possibility of the development of a chain process of the nucleation was demonstrated.  相似文献   

10.
本文通过对环状磷酸酯和环状亚磷酸酯类化合物的分子力学计算,观察到^1^7ONMR化学位移的变化同时受到氧原子局部范德华相互综合利用(E~V~D~W~-~O)和局部偶极相互作用能(E~i~i~p-~O)的影响。此外,在上述两类化合物中,环外氧原子的δ-压缩效应极为明显,这主要是由于该氧原子局部范德华相互作用能起决定作用的缘故。同时,经对二烷基砜类化合物的分子力学计算,首次获得^3^3SNMR化学位移和硫原子局部范德华相互作用能E~V~D~W~-~S之间良好的线性关系。  相似文献   

11.
In this work the induced van der Waals interaction between a pair of neutral atoms or molecules is considered by use of a statistical mechanical method. With use of the Schro?dinger equation this interaction can be obtained by standard quantum mechanical perturbation theory to second order. However, the latter is restricted to electrostatic interactions between dipole moments. So with radiating dipole-dipole interaction where retardation effects are important for large separations of the particles, other methods are needed, and the resulting induced interaction is the Casimir-Polder interaction usually obtained by field theory. It can also be evaluated, however, by a statistical mechanical method that utilizes the path integral representation. We here show explicitly by use of this method the equivalence of the Casimir-Polder interaction and the van der Waals interaction based upon the Schro?dinger equation. The equivalence is to leading order for short separations where retardation effects can be neglected. In recent works [J. S. H?ye, Physica A 389, 1380 (2010); Phys. Rev. E 81, 061114 (2010)], the Casimir-Polder or Casimir energy was added as a correction to calculations of systems like the electron clouds of molecules. The equivalence to van der Waals interactions indicates that the added Casimir energy will improve the accuracy of calculated molecular energies. Thus, we give numerical estimates of this energy including analysis and estimates for the uniform electron gas.  相似文献   

12.
It is shown that van der Waals interaction potential plays a crucial role in chemical reactions at low temperatures. By taking the Cl+HD reaction as an illustrative example, we demonstrate that quasibound states of the van der Waals potential preferentially undergo chemical reaction rather than vibrational predissociation. Prereaction occurs even when the wave functions of the quasibound states peak far out into the entrance channel, outside the region of the van der Waals well. It is found that chemical reaction dominates over nonreactive vibrational quenching in collisions of vibrationally excited HD molecules with ground state chlorine atoms at ultracold temperatures.  相似文献   

13.
This paper reports the formation of an organogel of an asymmetric bisphenazine through the growth of one-dimensional nanofibers via a coopertive interplay of pi-pi interaction, hydrogen bonding, and van der Waals interaction and the colorimetric acid sensing property of the nanofibers.  相似文献   

14.
15.
Interfacial fluctuations in the cohesive (van der Waals) interaction energy of spherical oil-drops with water provide evidence of a length scale dependent transition from linear to non-linear response behavior. For sub-nanometer oil-drop sizes, energy fluctuations are found to be independent of the van der Waals coupling strength, while nanometer (and larger) size oil drops experience highly non-linear energy fluctuations. The latter behavior is linked to enhanced hydrophobic density fluctuations and the emergence of entropic contributions to oil-water cohesive interaction free energies.  相似文献   

16.
研究了由聚合物的范德华作用导致的凝聚行为. 研究发现, 尽管聚合物同小分子的相行为的形成原因不同(聚合物体系的相行为是由动能、构象熵项和范德华作用能三项相互竞争的结果, 而小分子的相行为是由动能和范德华作用能相互竞争的结果), 但是它们表现出了极为相似的相行为.  相似文献   

17.
The well-known Schroeder paradox, i.e., the difference in the degrees of swelling of nonionogenic polymers occurring at equilibrium with liquid and vapor phases, has been discussed. A simple example has been presented, which illustrates the unavoidability of different degrees of swelling for a polymer brought into contact with vapor and liquid phases. A simple mechanism has been proposed for the excess swelling of a nonionogenic polymer immersed in a liquid phase, this mechanism being associated with the action of van der Waals and solvation forces at a polymer/solvent interface. The estimation of the contribution from the van der Waals interaction to the “excess” swelling has shown that the predicted values of the “excess” swelling agree with the data of real experiments.  相似文献   

18.
In this research a new idea for prediction of ultimate sizes of bimetallic nanocomposites synthesized in water-in-oil microemulsion system is proposed. In this method, by modifying Tabor Winterton approximation equation, an effective Hamaker constant was introduced. This effective Hamaker constant was applied in the van der Waals attractive interaction energy. The obtained effective van der Waals interaction energy was used as attractive contribution in the total interaction energy. The modified interaction energy was applied successfully to predict some bimetallic nanoparticles, at different mass fraction, synthesized in microemulsion system of dioctyl sodium sulfosuccinate (AOT)/isooctane.  相似文献   

19.
The OO band of the B←X visible spectrum of iodine has been observed in spite of its very small Franck-Condon factor. The expected satelite band of the van der Waals molecule HeI2 was not observed, and a mechanism is suggested to account for the absence of the van der Waals spectrum.  相似文献   

20.
Orientational order of surfactant micelles and proteins on crystalline templates has been observed but, given that the template unit cell is significantly smaller than the characteristic size of the adsorbate, this order cannot be attributed to lattice epitaxy. We interpret the template-directed orientation of rodlike molecular assemblies as arising from anisotropic van der Waals interactions between the assembly and crystalline surfaces where the anisotropic van der Waals interaction is calculated using the Lifshitz methodology. Provided the assembly is sufficiently large, substrate anisotropy provides a torque that overcomes rotational Brownian motion near the surface. The probability of a particular orientation is computed by solving a Smoluchowski equation that describes the balance between van der Waals and Brownian torques. Torque aligns both micelles and protein fibrils; the interaction energy is minimized when the assembly lies perpendicular to a symmetry axis of a crystalline substrate. Theoretical predictions agree with experiments for both hemi-cylindrical micelles and protein fibrils adsorbed on graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号