首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Like pH, salt concentration can have a dramatic effect on enzymatic catalysis. Here, a general equation is derived for the quantitative analysis of salt-rate profiles: k(cat)/K(M) = (k(cat)/K(M))(MAX)/[1+([Na+]/K[Na+])(n')], where (k(cat)/K(M))(MAX) is the physical limit of k(cat)/K(M), K(Na+) is the salt concentration at which k(cat)/K(M) = (k(cat)/K(M))(MAX)/2, and -n' is the slope of the linear region in a plot of log(k(cat)/K(M)) versus log [Na+]. The value of n' is of special utility, as it reflects the contribution of Coulombic interactions to the uniform binding of the bound states. This equation was used to analyze salt effects on catalysis by ribonuclease A (RNase A), which is a cationic enzyme that catalyzes the cleavage of an anionic substrate, RNA, with k(cat)/K(M) values that can exceed 10(9) M(-1) s(-1). Lys7, Arg10, and Lys66 comprise enzymic subsites that are remote from the active site. Replacing Lys7, Arg10, and Lys66 with alanine decreases the charge on the enzyme as well as the value of n'. Likewise, decreasing the number of phosphoryl groups in the substrate decreases the value of n'. Replacing Lys41, a key active-site residue, with arginine creates a catalyst that is limited by the chemical conversion of substrate to product. This change increases the value of n', as expected for a catalyst that is more sensitive to changes in the binding of the chemical transition state. Hence, the quantitative analysis of salt-rate profiles can provide valuable insight into the role of Coulombic interactions in enzymatic catalysis.  相似文献   

2.
An efficient enzyme model exhibiting enantioselective esterase activity was prepared by using molecular imprinting techniques. The enantiomerically pure phosphonic monoesters 4 L and 5 L were synthesized as stable transition-state analogues. They were used as templates connected by stoichiometric noncovalent interactions to two equivalents of the amidinium binding site monomer 1. After polymerization and removal of the template, the polymers were efficient catalysts for the hydrolysis of certain nonactivated amino acid phenylesters (2 L, 2 D, 3 L, 3 D) depending on the template used. Imprinted catalyst IP4 (imprinted with 4 L) enhanced the hydrolysis of the corresponding substrate 2 L by a factor of 325 relative to that of a buffered solution. Relative to a control polymer containing the same functionalities, prepared without template 4 L, the enhancement was still about 80-fold, showing the highest imprinting effect up to now. In cross-selectivity experiments a strong substrate selectivity of higher than three was found despite small differences in the structure of the substrate and template. Plots of initial velocities of the hydrolysis versus substrate concentration showed typical Michaelis-Menten kinetics with saturation behavior. From these curves, the Michaelis constant K(M) and the catalytic constant k(cat) can be calculated. The enantioselectivity shown in these values is most interesting. The ratio of the catalytic efficiency k(cat)/K(M), between the hydrolysis of 2 L- and 2 D-substrate with IP4, is 1.65. This enantioselectivity derives from both selective binding of the substrate (K(M)L/K(M)D=0.82), and from selective formation of the transition state (k(cat)L/k(cat)D=1.36). Thus, these catalysts give good catalysis as well as high imprinting and substrate selectivity. Strong competitive inhibition is caused by the template used in imprinting. This behavior is also quite similar to the behavior of natural enzymes, for which these catalysts are good models.  相似文献   

3.
The gene encoding a glycoside hydrolase family 43 beta-xylosidase (GbtXyl43A) from the thermophilic bacterium Geobacillus thermoleovorans strain IT-08 was synthesized and cloned with a C-terminal His-tag into a pET29b expression vector. The recombinant gene product termed GbtXyl43A was expressed in Escherichia coli and purified to apparent homogeneity. Michaelis-Menten kinetic parameters were obtained for the artificial substrates p-nitrophenyl-beta-D: -xylopyranose (4NPX) and p-nitrophenyl-alpha-L: -arabinofuranose (4NPA), and it was found that the ratio k (cat)/K (m) 4NPA/k (cat)/K (m) 4NPX was approximately 7, indicting greater catalytic efficiency for 4NP hydrolysis from the arabinofuranose aglycon moiety. Substrate inhibition was observed for the substrates 4-methylumbelliferyl xylopyranoside (muX) and the arabinofuranoside cogener (muA), and the ratio k (cat)/K (m) muA/k (cat)/K (m) muX was approximately 5. The enzyme was competitively inhibited by monosaccharides, with an arabinose K (i) of 6.8 +/- 0.62 mM and xylose K (i) of 76 +/- 8.5 mM. The pH maxima was 5.0, and the enzyme was not thermally stable above 54 degrees C, with a t (1/2) of 35 min at 57.5 degrees C. GbtXyl43A showed a broad substrate specificity for hydrolysis of xylooligosaccharides up to the highest degree of polymerization tested (xylopentaose), and also released xylose from birch and beechwood arabinoxylan.  相似文献   

4.
Real-time surface plasmon resonance (SPR) imaging measurements of surface enzymatic reactions on DNA microarrays are analyzed using a kinetics model that couples the contributions of both enzyme adsorption and surface enzyme reaction kinetics. For the case of a 1:1 binding of an enzyme molecule (E) to a surface-immobilized substrate (S), the overall enzymatic reaction can be described in terms of classical Langmuir adsorption and Michaelis-Menten concepts and three rate constants: enzyme adsorption (k(a)), enzyme desorption (k(d)) and enzyme catalysis (k(cat)). In contrast to solution enzyme kinetics, the amount of enzyme in solution is in excess as compared to the amount of substrate on the surface. Moreover, the surface concentration of the intermediary enzyme-substrate complex (ES) is not constant with time, but goes to zero as the reaction is completed. However, kinetic simulations show that the fractional surface coverage of ES on the remaining unreacted sites does reach a steady-state value throughout the course of the surface reaction. This steady-state value approaches the Langmuir equilibrium value for cases where k(a)[E] > k(cat). Experiments using the 3' --> 5' exodeoxyribonuclease activity of Exonuclease III on double-stranded DNA microarrays as a function of temperature and enzyme concentration are used to demonstrate how this model can be applied to quantitatively analyze the SPR imaging data.  相似文献   

5.
Beta-D-Xylosidase/alpha-L-arabinofuranosidase from Selenomonas ruminantium is the most active enzyme known for catalyzing hydrolysis of 1,4-beta-D: -xylooligosaccharides to D-xylose. Temperature dependence for hydrolysis of 4-nitrophenyl-beta-D-xylopyranoside (4NPX), 4-nitrophenyl-alpha-L-arabinofuranoside (4NPA), and 1,4-beta-D-xylobiose (X2) was determined on and off (k (non)) the enzyme at pH 5.3, which lies in the pH-independent region for k (cat) and k (non). Rate enhancements (k (cat)/k (non)) for 4NPX, 4NPA, and X2 are 4.3 x 10(11), 2.4 x 10(9), and 3.7 x 10(12), respectively, at 25 degrees C and increase with decreasing temperature. Relative parameters k (cat) (4NPX)/k (cat) (4NPA), k (cat) (4NPX)/k (cat) (X2), and (k (cat)/K (m))(4NPX)/(k (cat)/K (m))(X2) increase and (k (cat)/K (m))(4NPX)/(k (cat)/K (m))(4NPA), (1/K (m))(4NPX)/(1/K (m))(4NPA), and (1/K (m))(4NPX)/(1/K (m))(X2) decrease with increasing temperature.  相似文献   

6.
Liu AL  Zhou T  He FY  Xu JJ  Lu Y  Chen HY  Xia XH 《Lab on a chip》2006,6(6):811-818
We firstly transformed the traditional Michaelis-Menten equation into an off-line form which can be used for evaluating the Michaelis-Menten constant after the enzymatic reaction. For experimental estimation of the kinetics of enzymatic reactions, we have developed a facile and effective method by integrating an enzyme microreactor into direct-printing polymer microchips. Strong nonspecific adsorption of proteins was utilized to effectively immobilize enzymes onto the microchannel wall, forming the integrated on-column enzyme microreactor in a microchip. The properties of the integrated enzyme microreactor were evaluated by using the enzymatic reaction of glucose oxidase (GOx) with its substrate glucose as a model system. The reaction product, hydrogen peroxide, was electrochemically (EC) analyzed using a Pt microelectrode. The data for enzyme kinetics using our off-line form of the Michaelis-Menten equation was obtained (K(m) = 2.64 mM), which is much smaller than that reported in solution (K(m) = 6.0 mM). Due to the hydrophobic property and the native mesoscopic structure of the poly(ethylene terephthalate) film, the immobilized enzyme in the microreactor shows good stability and bioactivity under the flowing conditions.  相似文献   

7.
Peptide dendrimers were prepared by solid-phase peptide synthesis. Monomeric dendrimers were first obtained by assembly of a hexapeptide sequence containing alternate standard alpha-amino acids with diamino acids as branching units. The monomeric dendrimers were then dimerized by disulfide-bridge formation at the core cysteine. The synthetic strategy is compatible with functional amino acids and different diamino acid branching units. Peptide dendrimers composed of the catalytic triad amino acids histidine, aspartate, and serine catalyzed the hydrolysis of N-methylquinolinium salts when the histidine residues were placed at the outermost position. The dendrimer-catalyzed hydrolysis of 7-isobutyryl-N-methylquinolinium followed saturation kinetics with a rate constant of catalysis/rate constant without catalysis (k(cat)/k(uncat)) value of 3350 and a rate constant of catalysis/Michaelis constant (k(cat)/K(M)) value 350-fold larger than the second-order rate constant of the 4-methylimidazole-catalyzed reaction; this corresponds to a 40-fold rate enhancement per histidine side chain. Catalysis can be attributed to the presence of histidine residues at the surface of the dendrimers.  相似文献   

8.
Catalytic cleavage reactions of phosphorylase b were monitored directly on an amylopectin-immobilized 27 MHz quartz-crystal microbalance (QCM). When the inactivated phosphorylase b was injected into a phosphate buffer solution of amylopectin-immobilized QCM (method A), the binding of the enzyme to amylopectin was observed as a frequency decrease (mass increase). Then, when AMP (adenosine monophosphate) was added to activate the enzyme, the frequency gradually increased (mass decreased) due to the phosphorolysis of amylopectin in the presence of phosphates as buffers. When the AMP-activated phosphorylase b was employed (method B), the continuous reaction was observed which includes both the mass increase due to the enzyme binding to amylopectin at first and then the following mass decrease due to the phosphorolysis by the AMP-activated enzyme. All kinetic parameters for the enzyme binding to the substrate (binding and dissociation rate constants, k(on) and k(off), and dissociation constant, K(d)), the AMP binding to the enzyme as activator (K(AMP)), the catalytic rate constant (k(cat)) were obtained from curve fittings of time-courses of frequency (mass) changes. The obtained kinetic parameters were compared with those from Michaelis-Menten kinetics.  相似文献   

9.
The efficient integration of binding, catalysis, and multiple turnovers remains a challenge in building enzyme models. We report that systematic derivatization of polyethylene imine (PEI) with alkyl (C(2)-C(12)), benzyl, and guanidinium groups gives rise to catalysts ('synzymes') with rate accelerations (k(cat)/k(uncat)) of up to 10(4) for the intramolecular transesterification of 2-hydroxypropyl-p-nitrophenyl phosphate, HPNP, in the absence of metal. The synzymes exhibit saturation kinetics (K(M) approximately 250 microM, k(cat) approximately 0.5 min(-1)) and up to 2340 turnovers per polymer molecule. Catalysis can be specifically and competitively inhibited by anionic and hydrophobic small molecules. The efficacy of catalysis is determined by the PEI derivatization pattern. The derivatization reagents exert a synergistic effect, i.e., their combinations increase catalysis by more than the sum of each single modification. The pH-rate profile for k(cat)/K(M) is bell shaped with a maximum at pH 7.85 and can be explained as a combination of two effects that both have to be operative for optimal activity: K(M) increases at high pH due to deprotonation of PEI amines that bind the anionic substrate and kcat decreases as the availability of hydroxide decreases at low pH. Thus, catalysis is based on substrate binding by positively charged amine groups and the presence of hydroxide ion in active sites in an environment that is tuned for efficient catalysis. Inhibition studies suggest that the basis of catalysis and multiple turnovers is differential molecular recognition of the doubly negatively charged transition state (over singly charged ground state and product): this contributes a factor of at least 5-10-fold to catalysis and product release.  相似文献   

10.
In vitro evolution methods were used to obtain DNA enzymes that cleave either a 2',5'-phosphodiester following a D-ribonucleotide or a 3',5'-phosphodiester following an L-ribonucleotide. Both enzymes can operate in an intermolecular reaction format with multiple turnover. The DNA enzyme that cleaves a 2',5'-phosphodiester exhibits a k(cat) of approximately 0.01 min(-1) and catalytic efficiency, k(cat)/K(m), of approximately 10(8) M(-1) min(-1). The enzyme that cleaves an L-ribonucleotide is about 10-fold slower and has a catalytic efficiency of approximately 4 x 10(5) M(-1) min(-1). Both enzymes require a divalent metal cation for their activity and have optimal catalytic rate at pH 7-8 and 35-50 degrees C. In a comparison of each enzyme's activity with either its corresponding substrate that contains an unnatural ribonucleotide or a substrate that instead contains a standard ribonucleotide, the 2',5'-phosphodiester-cleaving DNA enzyme exhibited a regioselectivity of 6000-fold, while the L-ribonucleotide-cleaving DNA enzyme exhibited an enantioselectivity of 40-fold. These molecules demonstrate how in vitro evolution can be used to obtain regio- and enantioselective catalysts that exhibit specificities for nonnatural analogues of biological compounds.  相似文献   

11.
采用紫外光谱法研究了腈水合酶催化丙烯腈水合的过程,在不同丙烯腈初始浓度下,测定了催化过程中275nm紫外吸光度的变化,计算出丙烯酰胺的生成速率.用Michaelis-Menten方程对不同丙烯腈浓度下的Nocardiasp.腈水合酶催化速率进行了拟合,得到该酶以丙烯腈为底物的米氏常数(Km)为8.46mmol/L,单位质量腈水合酶的催化速率常数(kcat)为2398μmol/(min·mg).  相似文献   

12.
Using a highly sensitive flow-type 27?MHz quartz crystal microbalance, we could detect a small mass change during stepwise and alternating one-sugar transfer of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc) to an acceptor, catalyzed by chondroitin polymerase from Escherichia coli strain K4 (K4CP), and analyze the elongation mechanism of K4CP. K4CP was found to bind strongly to a chondroitin acceptor (K(d)=0.97?μM). Although the binding affinity and the catalytic rate constant for each monomer were considerably different, the apparent catalytic efficiency (k(cat)/K(m)) was similar (6.3×10(4) M(-1) s(-1) for GlcA transfer and 3.4×10(4) M(-1) s(-1) for the GalNAc transfer). This is reasonable for the smooth alternating elongation of GlcA and GalNAc on the acceptor. This is the first study to report the determination of kinetic parameters for enzymatic, alternated, sugar elongation.  相似文献   

13.
We have compared endo- and exo-type protease reactions and characterized the enzymatic reaction mechanisms by determining all kinetic parameters (k(on), k(off), k(cat), K(d) = k(off)/k(on), and K(m) = (k(off) + k(cat))/k(on)) by following the mass change of the formation and the decay of the enzyme-substrate (ES) complex (k(on) and k(off)), and the formation of the product (k(cat)) on a 27 MHz quartz-crystal microbalance in aqueous solutions. The K(m) value was nearly equal to the K(d) value for the endo-type protease (subtilisin and alpha-chymotrypsin); however, in the case of exo-type protease (carboxypeptidase P), the K(m) value was quite different from the K(d) value, due to k(cat) > k(off).  相似文献   

14.
Several mechanisms have been considered as principal factors in enhancing the catalytic reaction velocity of enzymes: approximation, covalent catalysis, general acid-based catalysis, and strain. Among them, the strain on the substrate and/or the enzyme is often found to be brought about on association of the substrate and the enzyme. If this strain is released in the transition state, it contributes to enhancing the k(cat) value, although it does not change the k(cat)/K(m) value. In aspartate aminotransferase, however, we found by analysis of the Schiff base pK(a) values that the unliganded enzyme carries a strain in the protonated Schiff base formed between the coenzyme pyridoxal phosphate and a lysine residue. This bond is cleaved in most of the reaction intermediates, including the transition state. As a result, the activation energy between the free enzyme plus substrate and the transition state is decreased by 16 kJ/mol, equal to the value of the strain energy. The net effect of this strain is enhancement (10(3)-fold) of the catalytic efficiency in terms of k(cat)/K(m), the more important indicator of the catalytic efficiency at low concentration of the substrate.  相似文献   

15.
Mimicking enzymes with alternative molecules represents an important objective in synthetic biology, aimed to obtain new chemical entities for specific applications. This objective is hampered by the large size and complexity of enzymes. The manipulation of their structures often leads to a reduction of enzyme activity. Herein, we describe the spectroscopic and functional characterization of Fe(III)-mimochrome VI, a 3.5 kDa synthetic heme-protein model, which displays a peroxidase-like catalytic activity. By the use of hydrogen peroxide, Fe(III)-mimochrome VI efficiently catalyzes the oxidation of several substrates, with a typical Michaelis-Menten mechanism and with several multiple turnovers. The catalytic efficiency of Fe(III)-mimochrome VI in the oxidation of 2,2'-azino-di(3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) and guaiacol (k(cat)/K(m)=4417 and 870 mM(-1) s(-1), respectively) is comparable to that of native horseradish peroxidase (HRP, k(cat)/K(m)=5125 and 500 mM(-1) s(-1), respectively). Fe(III)-mimochrome VI also converts phenol to 4- and 2-nitrophenol in the presence of NO(2) (-) and H(2) O(2) in high yields. These results demonstrate that small synthetic peptides can impart high enzyme activities to metal cofactors, and anticipate the possibility of constructing new biocatalysts tailored to specific functions.  相似文献   

16.
Monatshefte für Chemie - Chemical Monthly - Basic biochemical properties such as Michaelis constant (K M), turnover number (k cat), and the ratio between these two kinetic parameters of enzyme...  相似文献   

17.
This study addresses the response-to-retention hypothesis, which states that the subendothelial retention of atherogenic lipoproteins is the necessary and sufficient condition for the initiation of atherosclerosis. Here we focus on the relationship between the generation of ceramide in the low-density lipoprotein (LDL) phospholipid monolayer and the resulting aggregation of LDL particles. This study provides the first measurement of neutral, Mg (2+)-dependent Sphingomyelinase (Smase)-mediated ceramide formation from LDL-sphingomyelin and does so for a range of enzyme concentrations (0-0.22 units Smase/mL). The kinetics of ceramide generation was measured using a fluorescence assay for the above enzyme concentrations with a fixed substrate concentration (0.33 mg LDL/mL). The kinetics of LDL aggregate formation was measured by dynamic light scattering (DLS, method of cumulants) for identical enzyme concentrations. Ceramide concentration profiles were fit with a modification of the Michaelis-Menten model ( k a = 1.11 x 10 (-1) microM (-1) min (-1), k -a = 6.54 x 10 (2) microM (-1) min (-1), k 1 = 3.33 x 10 (1) microM (-1) min (-1), k -1 = 1.41 x 10 (-2) min (-1), k cat = 8.05 x 10 (1) min (-1), K M = 2.418 microM, k deact = 4.66 x 10 (-2) microM (-1) min (-1)) that accounts for the effects of enzyme attachment to the LDL monolayer and for deactivation of Smase due to product inhibition. LDL aggregation is described by a mass action model as explained in previous studies. A key result of this work is the finding that LDL aggregate size depends directly on ceramide concentration and is independent of enzyme concentration. This study demonstrates how principles of colloid science are relevant to important biomedical problems.  相似文献   

18.
alpha- and beta-Cyclodextrin 6(A),6(D)-diacids (1 and 2), beta-cyclodextrin-6-monoacid (14), beta-cyclodextrin 6(A),6(D)-di-O-sulfate (16) and beta-cyclodextrin-6-heptasulfate (19) were synthesised. Acids 1, 2 and 14 were made from perbenzylated alpha- or beta-cyclodextrin, by diisobutylaluminum hydride (DIBAL)-promoted debenzylation, oxidation and deprotection. Addition of molecular sieves was found to improve the debenzylation reaction. Sulfates 16 and 19 were made by sulfation of the appropriately partially protected derivatives and deprotection. Catalysis of 4-nitrophenyl glycoside cleavage by these cyclodextrin derivatives was studied. Compounds 1, 2 and 16 were found to catalyse the reaction, with the catalysis following Michaelis-Menten kinetics and depending first order on the phosphate concentration. In a phosphate buffer (0.5 M, 59 degrees C, pH 8.0), K(M) varied from 2-10 mM and the k(cat)/k(uncat) ratio from 80-1000 depending on the stereochemistry of the substrate and the catalyst, with 2 being the best catalyst and with the sulfated 16 also displaying catalytic ability. The monoacid 14 and the heptasulfate 19 were not catalytic.  相似文献   

19.
Catalytic effects of galactose oxidase on the oxidation of beta-D-galactose-carrying lipids with an oligo-ethylene glycol spacer (number of ethylene glycol units (n)=1, 2, 3, 6, 9, 13, and 20) were examined. The affinity of galactose oxidase for the galactose residue in the amphiphile (estimated by the inverse of the Michaelis constant, K(m)) was much higher than those for free D-galactose and small beta-D-galactopyranosides, and dependent on the length of the ethylene glycol spacer. That is, both below and above the critical micellar concentration, the 1/K(m) values decreased with an increase in the n value. The effectiveness of the enzyme, which can be estimated by the k(cat)/K(m) value, showed the same tendency as the 1/K(m) value. These results could be attributed to the role of the nonpolar environment around the galactose residue in the binding by the enzyme. A significant enhancement of the enzymatic oxidation of galactose residue on the liposome surface was also observed.  相似文献   

20.
This paper reports a method to characterize the kinetic constants for the action of enzymes on immobilized substrates. This example uses cutinase, a serine esterase that hydrolyzes 4-hydroxyphenyl valerate moieties that are immobilized on a self-assembled monolayer of alkanethiolates on gold. The product of the enzyme reaction is a hydroquinone, which is redox active and therefore permits the use of cyclic voltammetry to monitor the extent of reaction in situ. A kinetic model based on the Michaelis-Menten formalism is used to analyze the dependence of initial rates of reaction on both the substrate density and the enzyme concentration. The resulting value of k(cat)/K(M) for the interfacial reaction is comparable to that for a homogeneous phase reaction with a substrate of similar structure. This strategy of using monolayers presenting substrates for the enzyme and cyclic voltammetry to measure reaction rates provides quantitative and real-time information on reaction rates and permits a level of analysis of interfacial enzyme reactions that to date has been difficult to realize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号