首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.  相似文献   

2.
A technique is proposed for reducing unwanted diffraction contrast when imaging second phases in crystalline materials using transmission electron microscopy. With the suggested name of plasmon-ratio imaging, the technique uses an energy-filtered imaging system to record and determine a ratio for two images taken at energies in the low loss region. Unlike core-loss imaging, the use of very thin specimens is not required. It is concluded that it is often possible to create a ratio image in which the contrast is dominated by energy loss, that is, chemical differences, rather than by diffraction effects.  相似文献   

3.
This paper aims to analyze images created through scanning electron microscopy (SEM) of the surfaces of radioactive bioglass seeds for brachytherapy implants. The SEM surface images were taken of bioglass seeds made of [Si:Ca:Ho] with Zr and Ba contrast agents and of seeds made of [Si:Ca:Sm] with Ba contrast agent. The following groups were considered: bioglass seeds after synthesis, seeds after irradiation and surface-induced fractures. The SEM image pre-processing required an appropriate mounting support following metallization with gold to fix the bioglass seeds made of inorganic elements. The microscope images were analyzed and showed surface changes among the seed groups. Nuclear characterization of the radioactive bioglass seeds by gamma spectrometry provided the gamma signatures of Sm-153 and Ho-166 followed by the contrast agents. The particle ranges on ceramic; water and tissue were also analyzed using gamma and beta particle evaluations. The results complement the study of the characterization and biodegradability of radioactive bioglass seeds for brachytherapy implants.  相似文献   

4.
Field ionization measurements of high-n CH(3)I and C(2)H(5)I Rydberg states doped into krypton are presented as a function of krypton number density along the critical isotherm. These data exhibit a decrease in the krypton-induced shift of the dopant ionization energy near the critical point. This change in shift is modeled to within +/-0.2% of experiment using a theory that accounts for the polarization of krypton by the dopant ion, the polarization of krypton by the quasi-free electron that arises from field ionization of the dopant, and the zero point kinetic energy of the free electron. The overall decrease in the shift of the dopant ionization energy near the critical point of krypton, which is a factor of 2 larger than that observed in argon, is dominated by the increase in the zero point kinetic energy of the quasi-free electron.  相似文献   

5.
Morphology of polystyrene-block-poly(acrylic acid) vesicles was imaged by various modes of scanning electron microscopy (SEM), including recently developed wet scanning transmission electron microscopy (wet-STEM) by means of which we were able to follow the decrease in the thickness of a liquid solvent layer around the vesicles during controlled evaporation of water from the sample. Results show that wet-STEM allows for imaging of nanosized polymeric particles in the presence of the solvent.  相似文献   

6.
We present here the application of the energy-filtered transmission electron microscopy (EFTEM) in the tomographic mode to determine the precise 3D distribution of nitrogen within nitrogen-doped carbon nanotubes (N-CNTs). Several tilt series of energy-filtered images were acquired on the K ionization edges of carbon and nitrogen on a multiwalled N-CNT containing a high amount of nitrogen. Two tilt series of carbon and nitrogen 2D maps were then calculated from the corresponding energy-filtered images by using a proper extraction procedure of the chemical signals. Applying iterative reconstruction algorithms provided two spatially correlated C and N elemental-selective volumes, which were then simultaneously analyzed with the shape-sensitive reconstruction deduced from Zero-Loss recordings. With respect to the previous findings, crucial information obtained by analyzing the 3D chemical maps was that, among the two different kind of arches formed in these nanotubes (transversal or rounded ones depending on their morphology), the transversal arches contain more nitrogen than do the round ones. In addition, a detailed analysis of the shape-sensitive volume allowed the observation of an unexpected change in morphology along the tube axis: close to the round arches (with less N), the tube is roughly cylindrical, whereas near the transversal ones (with more N), its shape changes to a prism. This relatively new technique is very powerful in the material science because it combines the ability of the classical electron tomography to solve 3D structures and the chemical selectivity of the EFTEM imaging.  相似文献   

7.
Field ionization of high-n CH3I Rydberg states doped into argon is presented as a function of argon number density along the critical isotherm. These data exhibit a decrease in the argon induced shift of the dopant ionization energy near the critical point. We show that this decrease is due to the interaction between argon and the quasi-free electron arising from field ionization of the dopant. The energy of the quasi-free electron in argon near the critical point is calculated in a local Wigner–Seitz model containing no adjustable parameters to within ±0.2% of experiment.  相似文献   

8.
Natural rubber latexes investigated in this study have been chemically modified by seeded emulsion polymerization. Depending on the water affinity of the monomer involved (MMA or DMAEMA), the expected result was the grafting of the corresponding polymer inside or on the surface of the latex particles. The present article focuses on the grafting characterization of these modified natural rubber latexes. In this purpose, non-imaging classical experimental methods such as dynamic light scattering and nuclear magnetic resonance have been completed by microscopy techniques, including transmission imaging in scanning electron microscopy (SEM) and a recent imaging mode called wet-STEM. It consists in transmission imaging in an Environmental SEM operating in the wet-mode, allowing transmission observations of particles suspended in a liquid layer with good resolution and contrast. In the present study, we have adopted a comparative characterization approach between a nongrafted natural rubber latex and two grafted ones. Such an approach indeed contributes to highlight the particles morphology resulting from chemical modification using either MMA or DMAEMA. Transmission images in SEM of thin foils are relatively well interpreted and are completed with wet-STEM images of latexes in their native state, bringing important contributions for grafting characterization.  相似文献   

9.
The aim of this article was to investigate the effects of electron irradiation in ultrahigh vacuum environment on the surface properties of high‐performance carbon/bismaleimide (BMI) composites used in aerospace. The changes in surface chemical composition with increasing irradiation fluence were studied by XPS. The evolution of surface morphology and surface roughness were observed by atomic force microscopy (AFM). The mass loss behavior occurring in the surface layer of the composites was examined. The results indicated that the electron irradiation in high vacuum caused rupture of chemical bonds and cross‐linking process in the surface layer, thereby leading to the mass loss behavior and the formation of carbonification layer in the surface of the carbon/BMI composites. The changes in the surface chemical composition were determined by a competing effect existing between the rupture of chemical bonds and the cross‐linking process at lower irradiation fluence, and by a degradation process only at higher fluence of electron irradiation. The surface morphology was altered and the surface roughness was increased significantly after electron irradiation. The mass loss ratio first increased obviously at lower fluences, and then reached a plateau value of 0.45% beyond 5 × 1015 cm?2 fluence of electron irradiation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Gold nanocrystallites dispersed in an inhomogeneous gold matrix are detected by high-resolution scanning electron microscopy using a field emission source and backscattered electron detection in the composition mode, as well as by energy-filtered transmission electron microscopy in the plasmon energy region. The identity of the nanocrystalline domains was established by observing the same evaporated gold film samples but using bright-field, dark-field, electron diffractogram, and electron energy loss spectroscopy images in the transmission electron microscope. Comparison of these images shows that backscattered electron and plasmon energy detection can be used to identify crystalline domains in an otherwise chemically uniform sample. Copyright 2001 Academic Press.  相似文献   

11.
Digital imaging has been applied to structure analysis of biological macromolecules in combination with electron energy filtering. Energy filtering can improve the image contrast of frozen-hydrated specimens, but needs a high-sensitivity imaging device instead of photographic film, because of a decrease in electrons after filtration. Here, a lens-coupled slow-scan charge-coupled device (SSCCD) camera with a post-column-type energy filter were examined to image bacterial flagellar filaments embedded in ice. We first measured the modulation transfer function of this camera and showed the remarkable improvement, compared to other fiber-coupled SSCCD cameras. The 3D structure calculated at approximately 7-angstroms resolution clearly resolves alpha-helices. Furthermore, filtered datasets recorded on the SSCCD camera with liquid-nitrogen and liquid-helium cooling were compared with the previous unfiltered one on film with liquid-helium cooling. This report describes the suitability of digital imaging with energy filtering for higher-resolution structure studies from its practical application.  相似文献   

12.
This work presents in situ imaging of synthesized boehmite (γ-AlOOH) particles ranging from 20 to 100 nm, suspended in liquid, in a vacuum compatible microfluidic sample holder using a scanning electron microscopy (SEM) under the high vacuum mode and highlights the advantage of in situ liquid imaging of colloids. Nanometer-sized boehmite particles in high-level radioactive wastes at the Hanford site are known to be difficult to dissolve and cause rheological problems for processing in the nuclear waste treatment plant. Therefore, it is important to characterize boehmite particles and understand how they form aggregates in the liquid state. Several technical advancements are made to optimize in situ liquid SEM chemical imaging resulting in the improved ability to obtain secondary electron (SE), backscattered electron (BSE) images, and energy dispersive X-ray spectroscopy (EDX) spectra. Moreover, our results show mixed particles could be studied and identified based on the particle shape and elemental composition using in situ SEM imaging and EDX. Thus, we provide a new and improved approach to observe the evolution of particle dispersion and stability in liquid under conditions similar to those in the waste tank.  相似文献   

13.
Secondary electron emission is developed as a means to quantify and image protein binding to Au surfaces modified with patterned organic thin-film arrays. Alkane thiols were patterned via microcontact printing on gold, and their effects on the secondary electron (SE) yield of the surface, systematically quantified. We show that a self-assembled monolayer (SAM) of hexadecane thiol significantly increases the SE yield over the native gold surface, a yield that increases as a function of alkane chain length (C8-C16). This effect is linearly correlated with the surface potentials and wetting properties of these SAMs. Surface layers comprised of poly(ethylene glycol) (PEG) grafted polyacrylamide polymers behave differently, affecting the SE yield by attenuation according to the polymer thickness. These results demonstrate the relative contributions of factors related to the adsorbate molecular structures that serve to strongly mediate the SE yield, providing a foundation for exploiting them as a quantitative electron imaging probe. The latter capability is demonstrated using a model microfluidic assay in which a series of proteins was spatially addressed to a SAM-based pixel array. The gray scale contrasts seen with protein adsorption are directly correlated with both protein molecular weight and mass coverage. These methods are used in two model protein assay experiments: (1) the measurement of the concentration dependent adsorption isotherm for a model protein (fibrinogen); and (2) the selective recognition of a biotinylated protein layer by avidin. These results demonstrate a unique approach to imaging protein binding processes on surfaces with both high analytical and spatial sensitivity.  相似文献   

14.
This paper briefly reviews the potential applicability of analytical transmission electron microscopy (TEM) to elucidate both structural and chemical peculiarities of materials at high lateral resolution. Examples of analytical TEM investigations performed by energy-dispersive X-ray spectroscopy (EDXS), electron energy loss spectroscopy (EELS), and energy-filtered TEM (EFTEM) are presented for different materials systems including metals, ceramics, and compound semiconductors. In particular, results are given of imaging the element distribution in the interface region between gamma matrix and gamma' precipitate in the nickel-based superalloy SC16 by energy-filtered TEM. For core-shell structured BaTiO(3) particles the chemical composition and even the chemical bonding were revealed by EELS at a resolution of about 1 nm. A sub-nanometer resolution is demonstrated by energy-selective images of the Ga distribution in the surrounding of (In,Ga)As quantum dots. Moreover, the element distribution in (Al,Ga)As/AlAs multilayers with linear concentration gradients in a range of about 10 nm was investigated by EDXS line-profile analyses and EFTEM.  相似文献   

15.
The possibility of using a scanning electron microscope (SEM) for studying the morphology of mechanical polymer blends was investigated. Compounds of SBS/EPDM, and both filled and unfilled NBR/EPDM were tested. OsO4-stained thin-sections were also examined in a transmission electron microscope (TEM) and the results were compared.It seemed to be quite possible to use atomic number contrast detection in combination with OsO4 staining for visualizing the morphology of the blends in SEM. Domains as small as 0·1 μm were clearly seen. This was done by means of a Robinson backscattered electron detector. Sample preparation was easy, 2 mm thick rubber plates were cut on dry ice to obtain a smooth surface. After staining, the samples were coated with a thin conductive carbon layer.The inner structures of SBS and the carbon black particles were not resolved in SEM but were easily seen in TEM.  相似文献   

16.
The microchemistry of interfaces and corresponding interlayers in different fibre-reinforced ceramic and glass composite systems has been investigated by using a dedicated scanning transmission electron microscope demonstrating the potential applicabilities of such an instrument to this large field of materials science. Energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy were used to determine the materials composition on a nanometre scale. Besides analyses performed in the spot mode of the electron probe the distributions of the elements present in the interface region were measured as line profiles across the relevant interface structure by X-ray spectroscopy with a lateral resolution of about 5 nm, even for the detection of a light element as carbon. Moreover, in the composite systems under investigation the two-dimensional element distribution was also attained by energy-filtered imaging. In addition, first results of energy loss near edge structure analyses are presented indicating variations of the chemical bonding of silicon at the interface in a Nicalon fibre/Duran glass composite.  相似文献   

17.
This paper aims to give an overview of the technique of energy-filtered transmission electron microscopy (EFTEM). It explains the basic principles of the technique and points to the relevant literature for more detailed issues. Experimental examples are given to show the power of EFTEM to study the chemical composition of nanoscale samples in materials science. Advanced EFTEM applications like imaging spectroscopy and EFTEM tomography are briefly discussed.  相似文献   

18.
Time‐of‐flight SIMS (ToF‐SIMS) imaging offers a modality for simultaneously visualizing the spatial distribution of different surface species. However, the utility of ToF‐SIMS datasets may be limited by their large size, degraded mass resolution and low ion counts per pixel. Through denoising and multivariate image analysis, regions of similar chemistries may be differentiated more readily in ToF‐SIMS image data. Three established denoising algorithms—down‐binning, boxcar and wavelet filtering—were applied to ToF‐SIMS images of different surface geometries and chemistries. The effect of these filters on the performance of principal component analysis (PCA) was evaluated in terms of the capture of important chemical image features in the principal component score images, the quality of the principal component score images and the ability of the principal components to explain the chemistries responsible for the image contrast. All filtering methods were found to improve the performance of PCA for all image datasets studied by improving capture of image features and producing principal component score images of higher quality than the unfiltered ion images. The loadings for filtered and unfiltered PCA models described the regions of chemical contrast by identifying peaks defining the regions of different surface chemistry. Down‐binning the images to increase pixel size and signal was the most effective technique to improve PCA performance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The continuous electron beam of conventional scanning electron microscopes (SEM) limits the temporal resolution required for the study of ultrafast dynamics of materials surfaces. Here, we report the development of scanning ultrafast electron microscopy (S-UEM) as a time-resolved method with resolutions in both space and time. The approach is demonstrated in the investigation of the dynamics of semiconducting and metallic materials visualized using secondary-electron images and backscattering electron diffraction patterns. For probing, the electron packet was photogenerated from the sharp field-emitter tip of the microscope with a very low number of electrons in order to suppress space-charge repulsion between electrons and reach the ultrashort temporal resolution, an improvement of orders of magnitude when compared to the traditional beam-blanking method. Moreover, the spatial resolution of SEM is maintained, thus enabling spatiotemporal visualization of surface dynamics following the initiation of change by femtosecond heating or excitation. We discuss capabilities and potential applications of S-UEM in materials and biological science.  相似文献   

20.
《European Polymer Journal》2004,40(1):211-217
Continuous and discontinuous gold layers sputtered on polyethyleneterephthalate (PET) were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM) and by reflection of microwave radiation. The changes in the surface morphology of the continuous and discontinuous gold layers as a function of the sputtering time were clearly observed by AFM technique. SEM imaging of very thin gold layers was adversely affected by specimen charging. For medium sputtering times, when a continuous gold coverage is already formed, the SEM technique still show the presence of regions with very thin gold coverage which gradually disappear at longer sputtering times. Both, the AFM and SEM techniques confirmed that in the course of the gold deposition the initially small gold clusters grow and finally associate in a continuous layer. It was shown that the sub-microne metallic structures could be modeled by artificial, significantly larger structures prepared on PET by lithographic etching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号