首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the authors examine the effect of compressing a poroelastic fibrous layer lined with an isotropic plate on the sound transmission loss (TL). For this purpose, a 2-in. thick fibrous material and two isotropic plates with critical frequencies around 2300 Hz and 9700 Hz were used. The transfer matrix method was applied and the porous layer was assumed to have either a rigid, limp or elastic frame. Current models of compression are outlined, and measurements of the airflow resistivity as a function of compression show that these models are suitable only for low compression rates. TL predictions are compared next to experimental data in a range between 100 Hz and 10000 Hz for three compression rates, corresponding to 0%, 20% and 50%. The fibrous is uniformly compressed over 100% of its surface. Our experiments showed that compression reduces the TL by a maximum of 5 dB for a 50% compression, mainly at the mid-frequency range, around 800 Hz. This is due to a resonance in the thickness of the porous material, increasing the radiation efficiency of the structure at mid-frequencies. Moreover, reduction of the porous thickness and increase of the airflow resistivity with compression are the variations influencing the most the TL of the structure. These trends were also detected with the limp and rigid frame models but with a lower degree of accuracy compared to the elastic frame model.  相似文献   

2.
Thermoluminescence (TL) measurements were carried out on undoped and Mn2+ doped (0.1 mol%) yttrium aluminate (YAlO3) nanopowders using gamma irradiation in the dose range 1–5 kGy. These phosphors have been prepared at furnace temperatures as low as 400 °C by using the combustion route. Powder X-ray diffraction confirms the orthorhombic phase. SEM micrographs show that the powders are spherical in shape, porous with fused state and the size of the particles appeared to be in the range 50–150 nm. Electron Paramagnetic Resonance (EPR) studies reveal that Mn ions occupy the yttrium site and the valency of manganese remains as Mn2+. The photoluminescence spectrum shows a typical orange-to-red emission at 595 nm and suggests that Mn2+ ions are in strong crystalline environment. It is observed that TL intensity increases with gamma dose in both undoped and Mn doped samples. Four shouldered TL peaks at 126, 240, 288 and 350 °C along with relatively resolved glow peak at 180 °C were observed in undoped sample. However, the Mn doped samples show a shouldered peak at 115 °C along with two well defined peaks at ~215 and 275 °C. It is observed that TL glow peaks were shifted in Mn doped samples. The kinetic parameters namely activation energy (E), order of kinetics (b), frequency factor (s) of undoped, and Mn doped samples were determined at different gamma doses using the Chens glow peak shape method and the results are discussed in detail.  相似文献   

3.
《Journal of Electrostatics》2006,64(3-4):176-186
An efficient method is proposed for the computation of the electric field strength and of the space-charge density in configurations of at least three ionising and non-ionising electrodes. The physical model is derived under the assumptions commonly accepted for the study of corona fields. The mathematical model makes use of a conformal mapping that converts the actual boundary-free field zone into a rectangular domain with well-defined boundary conditions. The finite-difference method is then used for solving the differential equations that describe the ionic space-charge and electric field distribution. The computational procedure was employed for studying the simple case of the drift zone of the corona discharge generated between a so-called dual electrode and a grounded plate. The dual electrode consisted of an ionising wire (diameter 0.22 mm) located at 20 mm from a tubular metallic support (diameter 25 mm). The computed current–voltage characteristic and current density distribution at the surface of the collector plate were in good agreement with the experimental data obtained for this combined corona–electrostatics electrode arrangement.  相似文献   

4.
This paper presents results obtained for a new LiF:Mg,Cu,P (HMCP) preparation with modified Mg and Cu concentrations. The shape of the HMCP glow curve shows minimal differences for annealing in the range from 523 to 543 K for 10 min. The thermoluminescence (TL) readout value remained stable when annealed in the range from 513 to 543 K for 10 min. The new formula allows heating of the material to higher temperatures than that originally employed for the well-known GR-200A dosemeter, practically without losses in sensitivity. The TL sensitivity is approximately half of that for the GR-200A, and still 29-fold greater than that for the TLD-100 dosemeter, and the residual signal is approximately five-fold lower than for the GR-200A. These results indicate that the new TL material shows enhanced thermal stability and a lower residual TL signal at a small TL sensitivity cost. The heat treatment temperatures are related to concentrations of Mg and Cu in LiF:Mg,Cu,P.  相似文献   

5.
The effect of temperature on the dynamics of a GaAs-based quantum cascade laser (QCL) is analysed using a complete rate equation model. The analytical expressions for the threshold current density and the output power are derived using the model and the thermal behaviour of these parameters is examined. A better conformity of the threshold current density with experiment at higher temperatures is achieved. The effect of temperature on the 3 dB optical bandwidth is further investigated using the same model. A comparative analysis of the model is performed with the recently reported rate equation models. It is observed that the 3 dB optical bandwidth falls more rapidly at higher operating temperatures that highlight the effects of leakage and backscattering processes present in the device.  相似文献   

6.
T. Greber  M. Corso  J. Osterwalder 《Surface science》2009,603(10-12):1373-1377
Single sheets of hexagonal boron nitride on transition metals provide a model system for single layer dielectrics. The progress in the understanding of h-BN layers on transition metals of the last 10 years is shortly reviewed. Particular emphasis lies on the boron nitride nanomesh on Rh(1 1 1), which is a corrugated single sheet of h-BN, where the corrugation imposes strong lateral electric fields. Fermi surface maps of h-BN/Rh(1 1 1) and Rh(1 1 1) are compared. A h-BN layer on Rh(1 1 1) introduces no new bands at the Fermi energy, which is expected for an insulator. The lateral electric fields of h-BN nanomesh violate the conservation law for parallel momentum in photoemission and smear out the momentum distribution curves on the Fermi surface.  相似文献   

7.
We report the results of DC current–voltage characteristics, resistivity and conduction mechanism of 2500 Å thick ZnS films deposited by e-beam evaporation technique for applications of surface passivation in HgCdTe based devices. The typical near zero bias leakage currents were very low and varying from 37 fA to 1.1 pA corresponding to a resistivity variation of 2.2 × 1012 to 1.0 × 1013 ohm cm for the well behaved devices. The films showed typically leakage current densities of under 3 × 10?9 A/cm2 near zero bias. These observations were further analyzed for conduction mechanism results prevailing in our films. As regards current transport, these films showed trends of Ohmic conduction in low electric field strengths, combination of Ohmic conduction and Frenkel–Poole (FP) for medium field strengths and FP conduction for high electric field strengths. All the experimental observations could be fitted very well using the said conduction mechanisms. We have shown that ZnS can continue to be used as passivant for modern high density area arrays based on HgCdTe and in order to further improve the performance of this passivant, one has to reduce FP conduction at high fields of greater than 0.25 MV/cm.  相似文献   

8.
The aim of this paper is to evaluate the thermoluminescent (TL) response of a larimar, a variety of pectolite (NaCa2Si3O8[OH]). It is a blue pectolite only found on the terrestrial crust of the province of Barahona, in the south-western region of the Dominican Republic. The larimar rock used in this study, presented a light-blue color with brown areas. X-ray powder diffractometry (XRD), showed that the light-blue portion of the rock is composed essentially by pectolite and the brown portion is composed by a mixture of minerals. Aliquots of 5 mg of light-blue portions were irradiated with gamma rays with doses from 10 to 104 Gy and the TL glow curves were obtained from 50 to 400 °C. The glow curve showed a broad peak around 150 °C and a peak near 280 °C. Different pre-heat condition were used to remove the broad peak. The TL emission of the main peak appeared in the region of 580 nm. The TL response of the main peak showed a linear behavior up to 2500 Gy and a sub-linear behavior above this dose value. Studies of the 30 day fading effects in TL signal using a pre-heating temperature around 180 °C during 15 min were carried out and fading near 25% was observed.  相似文献   

9.
Low temperature solution combustion method was employed to synthesize Dy2O3 nanophosphors using two different fuels (sugar and oxalyl dihydrazine (ODH)). Powder X-ray diffraction confirm pure cubic phase and the estimated particle size from Scherrer's method in sugar and ODH fuel was found to be 26 and 78 nm, respectively, and are in close agreement with those obtained using TEM and W–H plot analysis. SEM micrographs reveal porous, irregular shaped particles with large agglomeration in both the fuels. An optical band gap of 5.24 eV and 5.46 eV was observed for Dy2O3 for sugar and ODH fuels, respectively. The blueshift observed in sugar fuel is attributed to the particles size effect. Thermoluminescence (TL) response of cubic Dy2O3 nanophosphors prepared by both fuels was examined using gamma and UV radiations. The thermoluminescence of sugar used samples shows a single glow peak at 377 °C for 1–4 kGy gamma irradiations. When dose is increased to 5 kGy, two more shouldered peaks were observed at 245 and 310 °C. However, in TL of ODH used samples, a single glow peak at 376 °C was observed. It is observed that TL intensity is found to be more in sugar used samples. In UV irradiated samples a single glow peak at 365 °C was recorded in both the fuels with a little variation in TL intensity. The trapping parameters were estimated by different methods and the results are discussed.  相似文献   

10.
This paper reports on the thermo (TL), iono (IL) and photoluminescence (PL) properties of nanocrystalline CaSiO3:Eu3+ (1–5 mol %) bombarded with 100 MeV Si7+ ions for the first time. The effect of different dopant concentrations and influence of ion fluence has been discussed. The characteristic emission peaks 5D07FJ (J=0, 1, 2, 3, 4) of Eu3+ ions was recorded in both PL (1×1011–1×1013 ions cm?2) and IL (4.16×1012–6.77×1012 ions cm?2) spectra. It is observed that PL intensity increases with ion fluence, whereas in IL the peaks intensity increases up to fluence 5.20×1012 ions cm?2, then it decreases. A well resolved TL glow peak at ~304 °C was recorded in all the ion bombarded samples at a warming rate of 5 °C s?1. The TL intensity is found to be maximum at 5 mol% Eu3+ concentration. Further, TL intensity increases sub linearly with shifting of glow peak towards lower temperature with ion fluence.  相似文献   

11.
The present work suggests an alternative experimental method in order to not only measure the signal of the deep traps in Al2O3:C without heating the sample to temperatures greater than 500 °C, but also use this signal for high dose level dosimetry purposes as well. This method consists of photo transfer OSL measurements performed at elevated temperatures using the blue LEDs (470 nm, FWHM 20 nm) housed at commercial Risø TL/OSL systems, after the sample was previously heated up to 500 °C in order to empty its main TL dosimetric trap. The influence of this procedure on specific features such as glow curve shape and sensitivity of the main TL glow peak was also studied.  相似文献   

12.
The TSDC and transient currents measurement have been carried out on pure poly(vinyl chloride), poly(methyl methacrylate) and polyblends of various weight ratios as a function of electric fields at constant poling temperature. For PVC and different blend samples single peak in the temperature range 100–170 °C has been observed in TSDC thermograms, however, for PMMA samples two peaks were observed at around 90 and 165 °C. The various TSDC parameters i.e. activation energy, charge released and relaxation times have been calculated. Results suggest that dipolar and space charge mechanism are dominant for observed current.  相似文献   

13.
Based on an improved two-dimension (2D) fractal model of rough ocean surface, the propagation effects of the rough ocean surface on the vertical electric fields generated by lightning return strokes are analyzed. The results show that the rough ocean surface has much effect on the electric field derivatives, but has no or little effect on the field peaks. The frequency above 10 MHz is attenuated significantly by the rough ocean surface, and the rapid attenuation of frequency above 10 MHz in the experimentally obtained spectrum may be taken into account the errors introduced by the roughness of the ocean surface.  相似文献   

14.
We propose a low subthreshold swing transistor architecture called Negative Capacitance Single Gate Silicon-On-Insulator Tunneling Field Effect Transistor (NC-SG-SOI-TFET) and present an analytical model to characterize its performance. Electrostatic potential distribution and electric field intensity in the channel region are obtained by solving the Poisson equation, and the drain current is calculated using the band-to-band carrier generation rate. An additional layer of ferroelectric oxide is used to obtain the negative capacitance. Effect of ferroelectric oxide is incorporated using one-dimensional Landau formalism. Through two dimensional theoretical analysis, we show that the proposed device has superior performance over traditional TFETs in terms of subthreshold swing and short channel effects. For example, a subthreshold swing of 11.82 mV/decade and operating voltage of 0.65 V for a drain current of 10−8 A/µm have been obtained. The physics behind the improved performance is discussed based on the presented model. The analytical model would also be instrumental in designing and optimizing such devices avoiding complexities and cost of numerical models.  相似文献   

15.
Electric fields can be induced by electron irradiation of insulating thin film materials. In this work, the electric fields under a broad beam illumination in transmission electron microscopy (TEM) are analyzed for insulating samples. Some damage phenomena observed can be interpreted by the mechanism of damage by the induced electric field (DIEF). For broad-beam illumination in an ultra-thin specimen, the electric field near the center of the illumination may not be strong, but at the periphery of the illumination the electric field can be significant. Therefore, damage may be easily observed in these regions rather than at the center of the illumination. For a beam which is broad compared to the specimen thickness, e.g. 100  1000 nm, a strong electric field pointing inward into the specimen near the surface region may result in cation diffusion into the specimen and/or anion diffusion out to the surface region. Meanwhile, a strong electric field perpendicular to the beam direction near the edge of the illumination may attract anions into the illuminated region, but eject cations to the periphery. For a wedge-shaped specimen, the electric field points inward into thicker region, driving cations toward the thicker region, while attracting anions to the edge region. On the sharp edge, a strong electric field pointing outward may be responsible for the edge-smoothing effect observed in insulating materials.  相似文献   

16.
Regularities of afterglow at room temperature and of thermoluminescence at further heating up to 673 K have been studied in bulk aluminum nitride single crystals. It has been established that after exposure to β-irradiation luminescence decay at RT may be described by superposition of two exponential components: fast (59 s) and slow (606 s) ones, caused by defects of the anion crystal sublattice ON- and VN-centers, respectively. The afterglow spectrum is shown to be characterized by the 3.43 eV band with FWHM=0.61 eV that dominates also in the thermoluminescence under study. From analysis of the TL curves in terms of the general order formalism it has been concluded that variation of the activation energy observed within the 0.46–0.85 eV range with increasing storage of the samples from 5 min to 3 days may be caused by energy distribution of traps on the basis of oxygen-related centers. For the first time the compensation effect has been found, and phenomenologically interpreted for the TL processes of the AlN single crystals. Isokinetic temperature has been estimated within the framework of empiric and non-empiric relations.  相似文献   

17.
We report the effect of defects introduced by heavy-ion irradiation with 2.6 GeV uranium ions at several matching fields in single crystalline Ba(Fe0.925Co0.075)2As2. The suppression rate of Tc at lower matching fields is larger than that at higher matching fields. The critical current density calculated from magnetic hysteresis loop is enhanced up to 4.1 × 106 A/cm2 at 2 K. Clear dips in magnetic hysteresis loops near zero field are observed at high matching fields. Field dependence of normalized relaxation rate is suppressed, and the relationship between the dip and the relaxation rate is discussed.  相似文献   

18.
The LM–OSL signal of quartz, while measured at room temperature, is dominated by an intermediate, broad and intense OSL component, so that its contribution and general characteristics are derived very accurately. Through a series of dose–response, bleaching and thermal decay at room temperature experiments, in conjunction with curve fitting studies, a component resolved analysis is carried out studying the correlation between this specific component, termed as LM–OSL component C2 and the 110 °C TL glow peak in quartz. The dose–response of these two luminescence components behaves exactly similar being linear at low doses and saturating at almost 100 Gy. Both signals decay exponentially under illumination, providing identical optical detrapping cross-section values. Residual of both luminescence signals after thermal decay at room temperature follows an exponential law, yielding similar mean half-lives. All previous luminescence features provide strong evidence for the electron trap being the same for both the 110 °C TL trap and the LM–OSL component C2. The results of the present work are very promising and clearly support the possibility of extrapolating the TL pre-dose methodology to the OSL pre-dose effect using only the LM–OSL component C2.  相似文献   

19.
《Current Applied Physics》2010,10(6):1427-1435
The paper presents a new body RF coil design scheme for a low-field open MRI system. The RF coil is composed of four rectangular loops which are made of wide copper strips located near the surfaces of the bottom and top pole faces of the permanent magnet. The body RF coil has been designed by using the pseudo electric dipole radiation (PEDPR) method with the Metropolis algorithm. In the calculation of the RF fields via the finite difference time domain (FDTD) method, the computational time increases as the RF frequency becomes lower. Moreover, the computational process using the FDTD method takes a very long time when the RF coil is optimized. The optimization requires varying the configuration of the RF coil system and performing successive calculations of field strength and field homogeneity. When we perform these successive calculations, the computational time can be reduced by using the PEDPR method, where the segmented current elements of the RF coil are treated as pseudo electric dipole radiation sources. Because the RF coil is made of wide strips, the variation of the current density on the strip has been considered in the B1-field calculation. For each configuration of the RF coil system, the current distribution is calculated via circuit analysis, where each copper strip is considered as a parallel combination of current element lines. The preliminary field calculation study by the FDTD method verifies both the circuit analysis method for the current distribution and the PEDPR method for the radiation field strength. The optimization of the RF coil configuration is performed by the Simulated Annealing (SA) process using the Metropolis algorithm. Simulations have been performed for a 10 MHz RF frequency. The optimized RF coil has four rectangular loops of 37 cm × 100 cm with 6.5 cm wide strips which are separated vertically 49 cm and horizontally center-to-center 63 cm. In the 25 cm diameter of spherical volume (DSV), the design results show a good field inhomogeneity of the B1-field below 0.49 dB (5.8%).  相似文献   

20.
The advanced hybrid particulate collector (AHPC) is an efficient hybrid system that combines the electrostatic precipitator (ESP) and the bag filter in a unique approach. In this study, an unstructured finite volume method (FVM) is used to compute the three-dimensional distributions of the electric field and the space charge density in an AHPC setup for two cases: without the perforated plate and with the perforated plate. The current–voltage characteristics of the AHPC setup are measured. The current on the bag plate has a mean value 7.82 μA without the perforated plate and 0.08 μA with the perforated plate for the measured voltages. The total currents are used to calculate the charge density at the corona wire according to the Peek's formula. For both cases, the numerical predictions of the current–voltage relations of the plates of the model AHPC agree well with the measurements. When the AHPC has the perforated plate, numerical results show that the electric field and space charge density distributions on the perforated plate have the same number of peaks corresponding to the holes. The electric field on the bag plate surface is lower than that of the top plate and the perforated plate. Though the bag plate has low current, its surface still has high space charge density. When the AHPC has no perforated plate, the electric field is higher than six times and the space charge density is higher than three times that of the case with the perforated plate on the bag plate surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号