首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The employment of 1,1,1-tris(hydroxymethyl)ethane ligand in higher oxidation state Mn cluster chemistry has yielded a new hexanuclear, mixed-valence (II,III,IV) compound with a rare [Mn66-O)]18+ octahedral core. The Mn6 molecule is completely ferromagnetically coupled and possesses an S = 11 ground state, the maximum for a MnII, 2MnIII, 3MnIV species.  相似文献   

2.
3.
Detailed studies are reported of a Mn(12) single-molecule magnet (SMM) in truly axial (tetragonal) symmetry. The complex is [Mn(12)O(12)(O(2)CCH(2)Br)(16)(H(2)O)(4)].4CH(2)Cl(2) (2.4CH(2)Cl(2) or Mn(12)-BrAc), obtained by the standard carboxylate substitution method. The complex has an S = 10 ground state, typical of the Mn(12) family, and displays frequency-dependent out-of-phase AC susceptibility signals and hysteresis in single-crystal magnetization vs applied DC field sweeps. Single-crystal high-frequency EPR spectra in frequencies up to 360 GHz exhibit narrow signals that are not overlapping multiplets, in contrast to [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)].2MeCO(2)H.4H(2)O (1 or Mn(12)-Ac), which also crystallizes in an axial (tetragonal) space group but which now is recognized to consist of a mixture of six hydrogen-bonded isomers in the crystal and thus gives multiple, inhomogeneously broadened EPR signals. Similarly, single-crystal (55)Mn NMR spectra on Mn(12)-BrAc display much sharper signals than a single crystal of Mn(12)-Ac, and this allows one Mn(III) signal to show an almost baseline-resolved quintet from quadrupolar splitting ((55)Mn, I = 5/2, 100%), allowing quadrupole coupling parameters (e(2)qQ) to be determined. In addition, it was found that crushing crystals of Mn(12)-BrAc into a microcrystalline powder causes severe broadening and shifts of the NMR resonances, emphasizing the superiority of single-crystal studies. The combined results establish that Mn(12)-BrAc is far superior to Mn(12)-Ac for the study of the intrinsic properties of the Mn(12) family of SMMs in axial symmetry, and for the search for new phenomena such as quantum interference effects caused by higher-order (>2nd-order) transverse terms in the spin Hamiltonian.  相似文献   

4.
The title compound, tetrakis(tetraethylammonium) cyclo‐tetra‐μ‐oxo‐tetrakis[dioxovanadium(V)] dihydrate, (C8H20N)4[V4O12]·2H2O, was obtained by reacting V2O5 with (C2H5)4NOH. It consists of a discrete centrosymmetric molecular anion, [V4O12]4?, where four tetrahedral VO4 units share two vertices with each other to form a ring. A water mol­ecule is attached on each side of the ring through hydrogen bonds.  相似文献   

5.
In the cone conformation calix[4]arenes possess lower-rim polyphenolic pockets that are ideal for the complexation of various transition-metal centres. Reaction of these molecules with manganese salts in the presence of an appropriate base (and in some cases co-ligand) results in the formation of a family of calixarene-supported [Mn(III)(2)Mn(II)(2)] clusters that behave as single-molecule magnets (SMMs). Variation in the alkyl groups present at the upper-rim of the cone allows for the expression of a degree of control over the self-assembly of these SMM building blocks, whilst retaining the general magnetic properties. The presence of various different ligands around the periphery of the magnetic core has some effect over the extended self-assembly of these SMMs.  相似文献   

6.
《Polyhedron》2007,26(9-11):1905-1911
A cyclic pentadiazo-pyridine ligand, cD5py, was prepared and its photoproduct, cC5py, in a frozen solution was confirmed to be a high-spin polycarbene with S = 10/2. The magnetic property of the 1:2 mixture of Co(p-tolsal)2; p-tolsal = N-p-tolylsalicylideniminato, and cD5py in a dilute frozen solution after irradiation was investigated by SQUID magneto/susceptometry. In the ac magnetic susceptibility measurements, the in-phase and out-of-phase components (χ′ and χ″, respectively) with frequency dependence were observed, indicating that the 1:2 complex, Co(p-tolsal)2-(cC5py)2, had slow magnetic relaxation characteristic of the single-molecule magnet (SMM). From the χ″ versus T plots with various frequencies, the values of activation barrier, Ueff, for the reverse of the magnetism was estimated to be 72 K. In the dc magnetic susceptibility measurements, the magnetic hysteresis loops were observed below 3 K. The value of the coercive force, Hc, depends on the temperature and increases on cooling. The hysteresis loop with Hc = 7.1 kOe was observed at 1.9 K.  相似文献   

7.
8.
Site-selective carboxylate abstraction has been achieved from [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(4)] complexes by treatment with HNO(3) in MeCN. The reaction of the R = Ph or CH(2)Bu(t)() complexes with 4 equiv of HNO(3) gives [Mn(12)O(12)(NO(3))(4)(O(2)CR)(12)(H(2)O)(4)] (R = CH(2)Bu(t) (6) or Ph (7)) in analytical purity. Complex 6.MeNO(2) crystallizes in monoclinic space group C2/c with the following cell parameters at -168 degrees C: a = 21.280(5), b = 34.430(8), c = 33.023(8) A, beta = 104.61(1) degrees, V = 23413 A, and Z = 8. The four NO(3)(-) groups are not disordered and are bound in bridging modes at axial positions formerly occupied by bridging carboxylate groups. (1)H NMR spectroscopy in CD(2)Cl(2) and CDCl(3) shows retention of the solid-state structure on dissolution in these solvents. DC magnetic susceptibility (chi(M)) and magnetization (M) studies have been carried out in the 2.00-300 K and 1.0-7.0 T ranges. Fits of M/Nmu(B) versus H/T plots gave S = 10, g = 1.92, and D = -0.40 cm(-1), where D is the axial zero-field splitting parameter. AC magnetic susceptibility studies on 6 have been performed in the 1.70-10.0 K range in a 3.5 Oe field oscillating at frequencies up to 1500 Hz. Out-of-phase magnetic susceptibility (chi(M)' ') signals were observed in the 4.00-8.00 K range which were frequency-dependent. Thus, 6 displays the slow magnetization relaxation diagnostic of a single-molecule magnet (SMM). The data were fit to the Arrhenius law, and this gave the effective barrier to relaxation (U(eff)) of 50.0 cm(-1) (72.0 K) and a pre-exponential (1/tau(0)) of 1.9 x 10(8) s(-1). Complex 6 also shows hysteresis in magnetization versus DC field scans, and the hysteresis loops show steps at regular intervals of magnetic field, the diagnostic evidence of field-tuned quantum tunneling of magnetization. High-frequency EPR (HFEPR) spectroscopy on oriented crystals of complex 6 shows resonances assigned to transitions between zero-field split M(s) states of the S = 10 ground state. Fitting of the data gave S = 10, g = 1.99, D = -0.46 cm(-1), and B(4)(0) = -2.0 x 10(-5), where B(4)(0) is the quartic zero-field coefficient. The combined results demonstrate that replacement of four carboxylate groups with NO(3)(-) groups leads to insignificant perturbation of the magnetic properties of the Mn(12) complex. Complex 6 should now be a useful starting point for further reactivity studies, taking advantage of the good leaving group properties of the NO(3)(-) ligands.  相似文献   

9.
The reactions of appropriate ratios of K2TeO3 and [Mn2(CO)10)] in superheated methanol solutions lead to a series of novel cluster anions [Te4Mn3(CO)10] (1), [Te2Mn3(CO)9]2- (2), [Te2Mn3(CO)9]- (3), and [Te2Mn4(CO)12]2- (4). When cluster 1 is treated with [Mn2(CO)10]/KOH in methanol, paramagnetic cluster 2 is formed in moderate yield. Cluster 2 is oxidized by [Cu(MeCN)4]BF4 to give the closo-cluster [Te2Mn3(CO)9]- (3), while treatment of 2 with [Mn2(CO)10]/KOH affords the closo-cluster 4. IR spectroscopy showed that cluster 1 reacted with [Mn2(CO)10] to give cluster 4 via cluster 2. Clusters 1-4 were structurally characterized by spectroscopic methods or/and X-ray analyses. The core structure of 1 can be described as two [Mn(CO)3] groups doubly bridged by two Te2 fragments in a mu2-eta2 fashion. Both [Mn(CO)3] groups are further coordinated to one [Mn(CO)4] moiety. Cluster 2 is a 49 e- species with a square-pyramidal core geometry. While cluster 3 displays a trigonal-bipyramidal metal core, cluster 4 possesses an octahedral core geometry.  相似文献   

10.
11.
Five 12-MC-4 organotin(IV) metallacrowns(MCs) with the types of [12-MCRSn(IV)N(shi)-4] (R = Et (1), Bu (2), Ph (3); H3Shi = salicylhydroxamic acid) and [12-MCRSn(IV)N(Clshi)-4] (R = Et (4), Bu (5), H3Clshi = 5-chlorosalicylhydroxamic acid) have been synthesized and characterized by elemental analyses, IR and TGA. X-ray single-crystal diffraction analyses were also carried out and showed that all complexes 1-5 contain a neutral 12-membered metallacrown ring which is formed by the succession of four repeating units of -[Sn-N-O]-, indicating the substituents on the tin(IV) atom are uninfluential in coordination of organotin(IV) centers with hydroxamic acid. Fluorescence properties of complexes 1-5 have been investigated, where complex 3 displays strong fluorescence emissions in the blue region. In addition, antitumor activities of complexes 4 and 5 have also been tested, and both the complexes exhibit weak activity towards human hepatocellular carcinoma cell line (Bel-7402) and Hela cell line.  相似文献   

12.
Nanospheric hydroxo-bridged clusters of [M(20)(OH)(12)(maleate)(12)(Me(2)NH)(12)](BF(4))(3)(OH)·nH(2)O (M = Co (1), Ni (2)) with O(h) symmetry were afforded under hydrothermal condition with Co(BF(4))(2)·6H(2)O/Ni(BF(4))(2)·6H(2)O and fumaric acid in a DMF/EtOH mixed solvent. They are characterized by elemental analysis, IR, and X-ray diffraction. X-ray single crystal diffraction analyses show that these two complexes are isostructural containing an ideally cubic M(8) core in that each two M atoms are doubly bridged at the edges by one OH(-) and one maleate, while these OH(-) and maleate groups are coordinated further by exterior identical 12 M atoms which construct a perfect M(12) icosahedron to encapsulate the cubic core. To our knowledge, such large clusters with O(h) symmetry are seldom. The variable-temperature magnetic susceptibility studies reveal that these two isostructures exhibit antiferromagnetic interactions.  相似文献   

13.
14.
The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4) metallic core, indicates large spin ground states, with likely values of S = 16 (±1) for each. Solid state AC susceptibility measurements confirm the large spin ground state values and is also suggestive of SMM behaviour for 2-5 as observed via the onset of frequency dependent out-of-phase peaks.  相似文献   

15.
[Mn(H2O)4(C4N2H4)][C6H4(COO)2] – An One‐Dimensional Coordination Polymer with Chain‐like [Mn(H2O)4(C4N2H4)]n2n+ Polycations Orthorhombic single crystals of [Mn(H2O)4(C4N2H4)][C6H4(COO)2] have been prepared in aqueous solution at room temperature. Space group Imm2 (no. 44), a = 1039.00(6) pm, b = 954.46(13) pm, c = 737.86(5) pm, V = 0.73172(12) nm3, Z = 2. Mn2+ is coordinated in a octahedral manner by four water molecules and two nitrogen atoms stemming from the pyrazine molecules (Mn–O 215.02(11) pm; Mn–N 228.7(4), 230.7(4) pm). Mn2+ and pyrazine molecules form chain‐like polycations with [Mn(H2O)4(C4N2H4)]n2n+ composition. The positive charge of the polycationic chains is compensated for by phthalate anions, which are accomodated between the chains. The phthalate anions are linked by hydrogen bonds to the polycationic chains. Thermogravimetric analysis in air revealed that the loss of water of crystallisation and pyrazine occurs in two steps between 130 and 245 °C. The resulting sample was stable up to 360 °C. Further decomposition yielded Mn2O3.  相似文献   

16.
The synthesis, structures and magnetic properties of two hexanuclear Mn(6) clusters are reported: Mn(6)(mu(4)-O)(2)(dapdo)(2)(dapdoH)(4)(mu(2)-OH)(2)](ClO(4))(2).6MeCN (.6MeCN) and [Mn(6)(mu(4)-O)(2)(dapdo)(2)(dapdoH)(4)(mu(2)-OCH(3))(2)](ClO(4))(2).2Et(2)O (.2Et(2)O) [dapdo(2-) is the dianion of 2,6-diacetylpyridine dioxime and dapdoH(-) is the monoanion of the aforesaid dioxime ligand]. Both complexes are mixed-valent with two Mn(II) and four Mn(III) atoms disposed in an edge-sharing bitetrahedral core. Both complexes and display the same [Mn(III)(4)Mn(II)(2)(mu(4)-O)(2)(mu(2)-OR)(2)](10+) core in which R = H for and R = Me for . The [Mn(III)(4)Mn(II)(2)] core is rather uncommon compared to the reported [Mn(III)(2)Mn(II)(4)] core in the literature. DC magnetic susceptibility measurements on and reveal the presence of competing exchange interactions resulting in an S(t) = 5 ground spin state. The magnetic behavior of the compounds indicates antiferromagnetic coupling between the manganese(iii) centers, whereas the coupling between the manganese(iii) and manganese(ii) is weakly antiferromagnetic or ferromagnetic depending on the bridging environments. Finally the interaction between the manganese(ii) centers from the two fused tetrahedra is weakly ferromagnetic in nature stabilizing S(t) = 5 ground spin state in compounds and .  相似文献   

17.
蒋安仁  蒋彤  庞震 《化学学报》1989,47(8):800-803
本文作者曾在用过钨酸分解法制备钨酸的过程中发现, 溶液中W与O2^2^-之比始终为2:1, 这一事实说明溶液中有2:1金属过氧配合物形成, 2:1铂过氧络合物[Mo4O12(O2)2]^4^-文献上已有记载, 但类似的钨配合物尚未见报道。本文制备了这二种配合物, 对比它们的红外和Raman光谱, 并用循环伏安法, 恒电位电解法探讨它们的氧化还原分解体系。  相似文献   

18.
Reaction of MnSO4 · H2O, 2,2′‐bipyridine (bpy), suberic acid and Na2CO3 in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(bpy)2(C8H12O4)2] · 2 H2O ( 1 ) and [Mn(H2O)2‐ (bpy)(C8H12O4)2/2] · H2O ( 2 ). In both complexes, the Mn atoms are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two trans positioned H2O molecules and two suberato ligands (d(Mn–O) = 2.107–2.328 Å; d(Mn–N) = 2.250–2.330 Å). The bis‐monodentate suberato ligands bridge Mn atoms to form dinuclear [Mn2(H2O)4(bpy)2(C8H12O4)2] complex molecules in 1 and 1D [Mn(H2O)2(bpy)(C8H12O4)2/2] chains in 2 . Via the intermolecular hydrogen bondings and π‐π stacking interactions, the dinuclear molecules in 1 are assembled into 2D networks parallel to (100), between which the crystal H2O molecules are sandwiched. The polymeric chains in 2 are linked together by interchain hydrogen bonding and π‐π stacking interactions into 3D networks with the crystal H2O molecules located in tunnels along [010]. Crystal data for 1 : P21/c (no. 14), a = 10.092(1) Å, b = 11.916(2) Å, c = 17.296(2) Å, β = 93.41(1)° and Z = 2. Crystal data for 2 : P21/c (no. 14), a = 11.176(2) Å, b = 9.688(1) Å, c = 37.842(6) Å, β = 90.06(1)° and Z = 8.  相似文献   

19.
蒋彤  蒋安仁  周勤伟 《化学学报》1989,47(12):117-1173
用热分析、程序升温超高真空质谱、真空原红外光谱等技术研究属于VskaIIb4:2钼、钨过氧配合物K~4M~4O~1~2(O~2)~1、K~4W~4O~1~2(O~2)~2.4H~2O的热分解行为, 前者中两个过氧基同时分解(278℃), 后者分两步进行(180和342℃), 每步分解一个过氧基, 4:2钨过氧配合物出现在180℃分解的原因是由于结晶水的作用。比较钼、钨过氧配合物分解温度, 发现VaskaIIb型配合物的热稳定性都比VaskaIIa 型的高。  相似文献   

20.
Abstract

We report our attempts to produce water-soluble Mn clusters of the type [Mn12O12(O2CR)16(H2O)4] and the synthesis, spectroscopic, structural, and electrochemical characterization of the three new compounds that were obtained. Clusters 2, 3, and 4 were prepared via substitution of the acetate ligands in [Mn12O12(O2CMe)16(H2O)4] (1) with either 3,4-diaminobenzoic acid, L-proline or L-ascorbic acid, respectively, which are all inexpensive and readily available. Clusters 2, 3, and 4 were characterized by elemental analysis, UV-Vis, and FTIR spectroscopies, XPS, MS, and XRD analysis, suggesting that the clusters retain their structure during the substitution reaction, albeit 4 was obtained partially substituted and reduced. Electrochemical measurements in acetate buffer at pH 6, including continuous cyclic voltammetry scans of the free ligands and of the clusters, imply that 4 is stable to the oxidation process, while in 2 the primary amine ligands are oxidized rapidly, leading to precipitation of the cluster. Overall, the voltammetric measurements support the spectroscopic-based proposed structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号