首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electromagnetic and microwave absorption properties of the composites employing FeSi alloy powders with different particle sizes as absorbent and paraffin as matrix were investigated. The results showed that the particle size had significant influence on the electromagnetic and microwave absorption properties of the composites in the 2-7 GHz frequency range. By decreasing the particle size of FeSi alloy powders, both the complex permittivity and permeability of the composites increased to a certain extent. In addition, the microwave absorption properties were improved, and the frequency of absorption peak shifted towards lower frequency range. In other words, the micron-grade FeSi alloy powders with smaller particle size were more suitable to be used as absorbent in measured frequency region.  相似文献   

2.
We have investigated the electromagnetic (EM) characteristics of CoxMn1−xFe2O4 spinel ferrite (where x=0.0, 0.5 and 1.0) nanoparticles (NPs)/paraffin nanocomposite material at 8-20 GHz. CoxMn1−xFe2O4 NPs have been synthesized by cetyltrimethylammonium assisted hydrothermal route using NaOH. A variation in complex dielectric permittivity and magnetic permeability at room temperature with frequency in the range 8-20 GHz has been studied. Particles showed phase purity and crystallinity in powder X-ray diffraction (XRD) analysis. At the same time, CoxMn1−xFe2O4 NPs demonstrated a spinel cubic structure from XRD results. A reflection loss of −46.60 dB was found at 10.5 GHz for an absorber thickness of 2 mm. CoxMn1−xFe2O4 may be attractive candidates for EM wave absorption materials.  相似文献   

3.
The complex permittivity (ε′–″), complex permeability (μ′–″) and microwave absorption properties of ferrite–polymer composites prepared with different ferrite ratios of 50%, 60%, 70% and 80% in polyurethane (PU) matrix have been investigated in X-band (8.2–12.4 GHz) frequency range. The M-type hexaferrite composition BaCo+20.9Fe+20.05Si+40.95Fe+310.1O19 was prepared by solid-state reaction technique, whereas commercial PU was used to prepare the composites. At higher GHz frequencies, ferrite's permeabilities are drastically reduced, however, the forced conversion of Fe+3 to Fe+2 ions that involves electron hopping, could have increased the dielectric losses in the chosen composition. We have measured complex permittivity and permeability using a vector network analyzer (HP/Agilent model PNA E8364B) and software module 85071. All the parameters ε′, ε″, μ′ and μ″ are found to increase with increased ferrite contents. Measured values of these parameters were used to determine the reflection loss at various sample thicknesses, based on a model of a single-layered plane wave absorber backed by a perfect conductor. The composite with 80% ferrite content has shown a minimum reflection loss of −24.5 dB (>99% power absorption) at 12 GHz with the −20 dB bandwidth over the extended frequency range of 11–13 GHz for an absorber thickness of 1.6 mm. The prepared composites can fruitfully be utilized for suppression of electromagnetic interference (EMI) and reduction of radar signatures (stealth technology).  相似文献   

4.
A novel application of Alnico powder as a thinner microwave absorbing material was investigated. The flake-like Alnico fine powder was found to have excellent complex permeability μ=μ-jμμ=μ-jμ and permittivity ε=ε-jεε=ε-jε in the frequency range of 2–18 GHz. The powder was made from extremely brittle ribbons which were produced using a single roller melt spinning technique. The dependences of the absorption characteristics on the frequency, thickness, and both the dielectric permittivity and magnetic permeability were obtained based on a model in which an electromagnetic wave is incident normal to the surface of the absorbing material backed by a perfect conductor. The samples have the largest values of μμ and μμ at 2 GHz. A minimum reflection loss of −11.4 dB is obtained at 2 GHz for composite with volume fraction 60% of Alnico powder and absorber thickness of 1.8 mm. The results show that flake-like Alnico powder composites can be applied as thinner microwave absorbers in S-band (2–4 GHz).  相似文献   

5.
This paper investigates the effect of particle size and compaction pressure on the magnetic properties of iron-phenolic soft magnetic composites (50 Hz-1000 kHz). The results showed that the optimum amount of phenolic resin to attain maximum permeability and minimum loss factor at 10 kHz is 0.7 wt% for samples containing iron powder with average particle size ∼150 μm compacted at 800 MPa. In accordance with this resin content, at high frequencies (>300 kHz), the sample with lower particle size ∼10 μm exhibits higher magnetic permeability, higher operating frequencies and lower imaginary part of permeability. With increase in the compaction pressure, specific resistivity decreases and imaginary and real parts of permeability increase at low frequencies.  相似文献   

6.
Microwave absorbing materials filled with BaTiO3 and carbonyl iron (CI) particles with various weight fractions (BaTiO3/CI particles=100/0 to 0/100) are investigated. The dielectric and magnetic properties of the absorbers can be tuned by changing the weight ratio of BaTiO3/CI particles in the frequency range of 2-18 GHz. Numerical simulations are also performed to design a single-layer and double-layer absorber. The minimum reflection loss of the composite filled with 20 wt% BaTiO3 and 60 wt% CI particles at 2.0 mm thickness can be reached to −42 dB at 4.1 GHz. With the weight ratio of CI particles in the composite increased, the microwave absorption peak shifted to the lower frequency region. By using a double-layer absorber structure, the microwave absorption performance of the absorber is enhanced. The result shows that the total thickness of the absorber can be reduced below 1.4 mm by using a matching layer filled with 50 wt% BaTiO3, and an absorption layer filled with 60 wt% BaTiO3 and 20 wt% CI particles, whereas the reflection loss below −10 dB can be obtained in the frequency range of 10.8-14.8 GHz and the minimum reflection loss of −59 dB can be obtained at 12.5 GHz.  相似文献   

7.
刘涛  周佩珩  梁迪飞  邓龙江 《中国物理 B》2012,21(5):50302-050302
In this work,we report the electromagnetic absorption(EMA) properties of composites consisting of micrometersized cobalt with flowerlike architecture synthesized by a facile hydrothermal reduction method.Compared with the conventional spherical Co-paraffin composites,the flowerlike Co-paraffin composites are favorable with respect to EMA performance in the low frequency region,ascribing interfacial polarization loss and Ohmic loss to the improvement in the impedance match.  相似文献   

8.
Composites of Ni-Mn-Ga particles in a polyurethane (PU) matrix are known to show up to 70% energy absorption under quasi-static mechanical loading. Reported here are results showing that the large mechanical energy absorption in Ni-Mn-Ga/PU composites persists up to at least 1 kHz and exceeds that in each of these control samples of pure PU, as well as in Fe2(Tb1/3Dy2/3) particles in epoxy, and single crystal Ni-Mn-Ga. The transmitted acoustic amplitude decreases linearly with increase in frequency, consistent with the theory, and at 1 kHz it is 0.7 V in the Ni-Mn-Ga single crystal, 0.65 V in pure PU, 0.45 in the Fe2(Tb1/3Dy2/3)/PU composites and 0.25 V in Ni-Mn-Ga/PU composites.  相似文献   

9.
Anatase titania-coated barium ferrite composites were prepared by a heterogeneous precipitation method in the presence of barium ferrite particles. The obtained samples were characterized by ξ-pH, TEM, EDX and XRD. The complex permittivity and permeability were studied in the frequency range of 2-12 GHz. The structure and microwave response properties are investigated. The results show that the coverage of titania has a great influence on microwave response of barium ferrite. The formation of an anatase titania nano-layer on the surface of a barium ferrite particle changes the character of the frequency dispersion of the complex permittivity. Comparing the anatase titania-coated barium ferrite composites with the uncoated barium ferrite, the complex permittivity of the anatase titania-coated barium ferrite composites is higher than that of uncoated barium ferrite. The complex permeability of composites was found to decrease with an increase in frequency as well as with the molar ratio of Ti:Ba. The enhancement of the complex permittivity may be due to dipolar polarization and interfacial polarization. The maximum reflection loss was obtained at the Ti:Ba ratio of 1:10, and the peak of the maximum reflection loss shifts to a lower frequency value with increasing titania fraction. By changing the thickness of titania coverage, the frequency dependence of the complex permittivity could be adjusted, which provides us an opportunity for the synthesis of tailored particles.  相似文献   

10.
Based on an equivalent resistance-capacitance (RC) network, we investigate theoretically the complex permittivity and microwave absorption properties of carbon nanotubes (CNTs)/polymer composite in the frequency range of 50 MHz-3 GHz using the logarithmic mixing rule. Both the real and imaginary parts of the permittivities of CNTs and polymer are considered in detail. The simulated results show that the real and imaginary permittivities of the composite increase explicitly with increasing volume fraction of CNTs, and the latter is more sensitive. The calculated complex permittivity spectra of the composite are in good agreement with the available experimental data. In addition, a good linear relationship between microwave absorbance and frequency is found.  相似文献   

11.
Ternary composites of BiFeO3/graphene nanoplatelet (GNP)/epoxy composites were synthesized and its electromagnetic and microwave absorbing properties were studied; the main absorbing mechanism was illustrated. The phase, microstructure, and microwave absorbing properties were characterized by X-ray diffraction, scanning electron microscope, and vector network analyzer. The results indicated that the BiFeO3 was successfully synthesized and the GNP was uniformly distributed in the composites, and the complex permittivity of BiFeO3/GNP/epoxy composites increased with increasing the GNP content due to the interface polarization and conductance loss. The minimum reflection loss value was reached to ??45 dB at 9.25 GHz with the thickness of 1.4 mm when the GNP content was 2 wt%, and also the absorbing properties of (BiFeO3+GNP)/epoxy composites can be tailored by the GNP content and composite thickness, which may be used as a kind of absorbing materials with good absorbing performance and low density.
Graphical abstract The reflection loss curves and the simulated matching thickness of GNP-BiFeO3-epoxy composites with 2 wt% GNP content. As can be seen, the minimum reflection loss value was reached to ??45 dB at 9.25 GHz with the thickness of 1.4 mm, and also the quarter-wavelength matching theory can be used to illustrate the good absorbing properties of GNP-BiFeO3-epoxy composites.
  相似文献   

12.
Silica/epoxy composites have been widely used in functional electric device applications. Silica nanoparticles, both unmodified and modified with the coupling agent KH-550, were used to prepare epoxy composites. Dielectric measurements showed that nanocomposites exhibit a higher dielectric constant than the control sample, and had more obvious dielectric relaxation characteristics. Results showed that particle surface properties have a profound effect on the dielectric behavior of the nanocomposites. These characteristics are attributed to the local ununiformity of the microstructure caused by the large interface area and the interaction between the filler and the matrix. This phenomenon is explained in terms of prolonging chemical chains created during the curing process. The mechanism is discussed with measurements of X-ray diffraction (XRD) and Fourier transform infrared (FTIR).  相似文献   

13.
An inert gas condensation technique was used to prepare nanometer-sized particles of metallic iron and iron oxide. The particles were passivated by the controlled oxidation of the particle surface leading to an Fe-oxide shell-Fe core structure. Nanoparticle–polymer composites were obtained by spin casting mixtures of nanoparticles and polymethylmethacrylate films. The magnetic properties of the nanoparticles compressed into pellets and dispersed in the composites were both studied. The particles were observed to exhibit increased coercivity and exchange bias. The exchange bias was observed to increase with oxide shell thickness. The magnetism in the nanoparticle composites was studied as a function of nanoparticle loading. It was observed that when the particles were dispersed into the nanocomposite the coercivity was increased, suggesting a heightened anisotropy barrier. Similarly, the magnetic relaxation results indicate that the composites exhibit significantly reduced relaxations through the entire temperature range, as compared to the compressed pellet. This observation supports the possibility of heightened anisotropy barriers due to reduced dipolar interactions.  相似文献   

14.
In this work, the effect of PZT particle size on the properties of PZT–PC composites was investigated. PZT of various median particle sizes (3.8–620 μm) were used at 50% by volume to produce the composites. The results showed that the dielectric properties of the composites increased marginally with PZT particle size where εr = 176 and 167 for composites with 620 μm and 3.8 μm PZT particle size, respectively. A noticeable increase in d33 values was also found when the particle size was increased where the composite with 620 μm PZT particles size was found to have d33 value of 26 pC/N compared to 17 pC/N for the composite with 3.8 μm PZT particle size. The enhancement in the dielectric and piezoelectric properties was contributed to lesser contacting surfaces between the cement matrix and the PZT particles.  相似文献   

15.
16.
The cross section of absorption of electromagnetic radiation by a fine spherical metal particle is calculated. The influence of the skin effect on the absorption cross-section is estimated for an arbitrary ratio between the free path and size of the particle. The results of this work are compared with those obtained earlier in the framework of classical electrodynamics. It is shown that taking into account the kinetic effects modifies essentially the known data for the skin effect in a spherical particle.  相似文献   

17.
In this work carbonyl iron/La0.6Sr0.4MnO3 composites were prepared to develop super-thin microwave absorbing materials. The complex permittivity, permeability and microwave absorption properties are investigated in the frequency range of 8-12 GHz. An optimal reflection loss of −12.4 dB is reached at 10.5 GHz with a matching thickness of 0.8 mm. The thickness of carbonyl iron/La0.6Sr0.4MnO3 absorber is thinner, compared with conventional carbonyl iron powders with the same absorption properties. The bandwidth with a reflection loss exceeding −7.4 dB is obtained in the whole measured frequency range with the thickness of 0.8 mm. The excellent microwave absorption properties are attributed to a better electromagnetic matching established by the combination of the enhanced dielectric loss and nearly invariable magnetic loss with the addition of La0.6Sr0.4MnO3 nanoparticles in the composites. Our work indicates that carbonyl iron/La0.6Sr0.4MnO3 composites may have an important application in wide-band and super-thin electromagnetic absorbers in the frequency range of 8−12 GHz.  相似文献   

18.
19.
《Composite Interfaces》2013,20(5):483-495
The effect of particle size of graphite particles on the dispersion state of graphite particles and electrical conductivity of graphite/low-density polyethylene (LDPE) composites is investigated. Graphite particles which have plate-like and spherical shapes and mean particle sizes of 2.1 to 82.6 μm are used. Scanning electron microscopy observation showed that graphite particles are not aggregated and ordered along the direction of mixing-roll in the polymer matrix. X-ray diffraction measurements show that crystallite size of the (110) plane of polyethylene crystal and the crystallinity are significantly affected by the particle size of graphite particles. These results were interpreted as due to the orientation of PE crystallites. The electrical conductivity of composites changes discontinuously at the critical volume fraction of particles, Øc. The Øc values given by the percolation equation increase with decreasing of the particle size of graphites. The plate-like graphite particles with a mean particle size of 2.1 μm could induce conductivity at Øc of 0.135. The values of Øc increased linearly with increasing of the mean particle sizes of the plate-like graphites. The value of Øc of spherical graphite particle is the largest value, 0.292, in all specimens.  相似文献   

20.
李振武 《物理学报》2012,61(1):16103-016103
基于CdS良好的光学性质和单壁碳纳米管(SWCNT)优异的电子学性质, 制备了纳米CdS/SWCNT复合材料和纳米CdS/聚乙烯亚胺(PEI)功能化SWCNT复合材料, 并利用日光灯光源模拟太阳光研究了它们的光电性质. 结果表明, 纳米CdS/SWCNT复合材料呈现显著的负光电导现象, 而纳米CdS/PEI-SWCNT复合材料呈现强烈的正光电导现象. 用电子转移理论对这一结果进行了解释. 两样品在大角度弯折的情况下, 光电性质均基本没有变化. 因此, 纳米CdS/碳纳米管复合材料在光电领域, 尤其是新兴的柔性光电子学领域有着良好的应用前景. 关键词: 碳纳米管 CdS 光电材料 复合材料  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号