首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A constitutive model is developed for the transformation, reorientation and plastic deformation of shape memory alloys (SMAs). It is based on the concept that an SMA is a mixture composed of austenite and martensite, the volume fraction of each phase is transformable with the change of applied thermal-mechanical loading, and the constitutive behavior of the SMA is the combination of the individual behavior of its two phases. The deformation of the martensite is separated into elastic, thermal, reorientation and plastic parts, and that of the austenite is separated into elastic, thermal and plastic parts. Making use of the Tanaka’s transformation rule modified by taking into account the effect of plastic deformation, the constitutive model of the SMA is obtained. The ferroelasticity, pseudoelasticity and shape memory effect of SMA Au-47.5 at.%Cd, and the pseudoelasticity and shape memory effect as well as plastic deformation and its effect of an NiTi SMA, are analyzed and compared with experimental results.  相似文献   

2.
This paper concerns the behavior of Cu-Al-Be polycrystalline shape memory alloys under cyclic thermomechanical loadings. Sometimes, as shown by many experimental observations, a permanent inelastic strain occurs and increases with the number of cycles. A series of cyclic thermomechanical tests has been carried out and the origin of the residual strain has been identified as residual martensite. These observations have been used to develop a 3D macroscopic model for the superelasticity and stress assisted memory effect of SMAs able to describe the evolution of permanent inelastic strain during cycles. The model has been implemented in a finite elements code and used to simulate the behavior of antagonistic actuators based on SMA springs under cyclic thermomechanical loading with a residual displacement appearance.  相似文献   

3.
In this work, we propose a macroscopic phenomenological model that is based on the classical framework of thermodynamics of irreversible processes and accounts for the effect of multiaxial stress states and non-proportional loading histories. The model is able to account for the evolution of both twinned and detwinned martensite. Moreover, reorientation of the product phase according to loading direction is specifically accounted for. Towards this purpose the inelastic strain is split into two contributions deriving, respectively, from creation of detwinned martensite and reorientation of previously existing martensite variants. Computational tests demonstrate the ability of the model to simulate the main aspects of the shape memory response in a one-dimensional setting and some of the features that have been experimentally found in the case of multiaxial non-proportional loading histories. Experimental non-proportional loading paths have also been simulated and a good qualitative agreement between numerical and experimental response is observed.  相似文献   

4.
5.
The microstructure of shape memory alloys changes with the thermomechanical history of the material. During thermomechanical loading, austenite, thermally-induced martensite or stress-induced martensite can be simultaneously present in the material. In applications integrating SMA parts, utilization conditions seriously affect the microstructure and can generate macroscopic strain or stress. Consequently, during thermomechanical loadings, it is important to be able to proportion the different phases and consequently to understand the kinetic transformation. This is very useful in the development of constitutive equations. This study shows, by a series of tests, that the proposed experimental method, based on the measurement of the variation of electric resistance of CuAlBe wires, permits to determine the volume fraction of the different phases present in the material (i.e., austenite, stress-induced martensite and thermally-induced martensite). The proposed method is applied to the most common thermomechanical behavior met in engineering applications of shape memory alloys: pseudoelasticity, pseudoplasticity, recovery-stress and stress-assisted two-way shape memory effect. The proportioning method based on a mixture law integrating the resistivity of pure phases present in the SMA is first performed on different two-phase mixture cases and then applied to a three phase mixture case.  相似文献   

6.
Pseudoelasticity and the shape memory effect (SME) due to martensitic transformation and reorientation of polycrystalline shape memory alloy (SMA) materials are modeled using a free energy function and a dissipation potential. Three different cases are considered, based on the number of internal state variables in the free energy: (1) austenite plus a variable number of martensite variants; (2) austenite plus two types of martensite; and (3) austenite and one type of martensite. Each model accounts for three-dimensional simultaneous transformation and reorientation. The single-martensite model was chosen for detailed study because of its simplicity and its ease of experimental verification. Closed form equations are derived for the damping capacity and the actuator efficiency of converting heat into work. The first law of thermodynamics is used to demonstrate that significantly more work is required to complete the adiabatic transformation than the isothermal transformation. Also, as the hardening due to the austenite/martensite misfit stresses approaches zero, the transformation approaches the isothermal, infinite specific heat conditions of a first-order transformation. In a second paper, the single-martensite model is used in a mesomechanical derivation of the constitutive equations of an active composite with an SMA phase.  相似文献   

7.
A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys(SMAs). Three phases,austenite A, twinned martensite Mtand detwinned martensite M~d, as well as the phase transitions occurring between each pair of phases( A → M~t, M~t→ A, A → M~d,M~d→ A, and M~t→ M~d) are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases(A, M~t, and M~d) and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model.  相似文献   

8.
Shape memory alloys (SMAs) are materials that, among other characteristics, have the ability to present high deformation levels when subjected to mechanical loading, returning to their original form after a temperature change. Literature presents numerous constitutive models that describe the phenomenological features of the thermomechanical behavior of SMAs. The present paper introduces a novel three-dimensional constitutive model that describes the martensitic phase transformations within the scope of standard generalized materials. The model is capable of describing the main features of the thermomechanical behavior of SMAs by considering four macroscopic phases associated with austenitic phase and three variants of martensite. A numerical procedure is proposed to deal with the nonlinearities of the model. Numerical simulations are carried out dealing with uniaxial and multiaxial single-point tests showing the capability of the introduced model to describe the general behavior of SMAs. Specifically, uniaxial tests show pseudoelasticity, shape memory effect, phase transformation due to temperature change and internal subloops due to incomplete phase transformations. Concerning multiaxial tests, the pure shear stress and hydrostatic tests are discussed showing qualitatively coherent results. Moreover, other tensile–shear tests are conducted modeling the general three-dimensional behavior of SMAs. It is shown that the multiaxial results are qualitative coherent with the related data presented in the literature.  相似文献   

9.
Wang  Jun  Gu  Xiaojun  Xu  Yingjie  Zhu  Jihong  Zhang  Weihong 《Nonlinear dynamics》2021,103(2):1393-1414

This paper presents a thermomechanical model for pseudoelastic shape memory alloys (SMAs) accounting for internal hysteresis effect due to incomplete phase transformation. The model is developed within the finite-strain framework, wherein the deformation gradient is multiplicatively decomposed into thermal dilation, rigid body rotation, elastic and transformation parts. Helmholtz free energy density comprises three components: the reversible thermodynamic process , the irreversible thermodynamic process and the physical constraints of both. In order to capture the multiple internal hysteresis loops in SMA, two internal variables representing the transition points of the forward and reverse phase transformation, \(\phi _s^f\) and \(\phi _s^r\), are introduced to describe the incomplete phase transformation process. Evolution equations of the internal variables are derived and linked to the phase transformation. Numerical implementation of the model features an Euler discretization and a cutting-plane algorithm. After validation of the model against the experimental data, numerical examples are presented, involving a SMA-based vibration system and a crack SMA specimen subjected to partial loading–unloading case. Simulation results well demonstrate the internal hysteresis and free vibration behavior of SMA.

  相似文献   

10.
The thermo-mechanical behavior of polycrystalline shape memory alloy (SMA) under multi-axial loading with varying temperature conditions has been studied by experiments. Recently the research has been extended theoretically and a mechanical model of polycrystalline SMA and the corresponding mesoscopic constitutive equations have been developed. The model presented in this paper is constructed on the basis of the crystal plasticity and the deformation mechanism of SMA. The variants in the crystal grains and the orientations of crystal grains in the polycrystal are considered in the proposed model; the constitutive equations are derived on the basis of the proposed model. The volume fraction of the martensite variants in the transformation process and the influence of the stress state on the transformation process are also considered. Some calculated results obtained by the constitutive equations are presented and compared with the experimental results. It is found that the deformation behavior of SMA under complex loading conditions can be well reproduced by the calculation of the constitutive equations.  相似文献   

11.
12.
论文基于Ginzburg-Landau理论,建立了一个反映纳米多晶NiTi形状记忆合金取向依赖性的二维多晶相场模型,研究了晶粒取向对其超弹性性能的影响.结果 表明,纳米多晶NiTi形状记忆合金的超弹性行为依赖于晶粒取向分布,即:多晶模型中在所研究的参数变化范围内,晶粒取向分布范围越广、晶粒间取向差越大(无明显织构),超...  相似文献   

13.
The paper presents a consistent integration scheme for a model of shape memory alloys that takes into account the processes of detwinning and reorientation of martensite. Lagrange multipliers are used to account for the saturation condition on the martensitic phase, which expresses the requirement on the inelastic deformation of martensite not to exceed a material-specific value. A detailed procedure for implicit time integration of the constitutive equations is given, including a comprehensive derivation of a closed-form expression for the consistent tangent moduli. The equations are implemented into a commercial finite element software, which is used to simulate the response of martensitic SMA structures to complex loading. The results are shown to agree with experimental data taken from the literature.  相似文献   

14.
In this work we develop a finite-deformation-based, thermo-mechanically-coupled and non-local phenomenological theory for polycrystalline shape-memory alloys (SMAs) capable of undergoing austenite ↔ martensite phase transformations. The constitutive model is developed in the isotropic plasticity setting using standard balance laws, thermodynamic laws and the theory of micro-force balance (Fried and Gurtin, 1994). The constitutive model is then implemented in the ABAQUS/Explicit (2009) finite-element program by writing a user-material subroutine. Material parameters in the constitutive model were fitted to a set of superelastic experiments conducted by Thamburaja and Anand (2001) on a polycrystalline rod Ti–Ni. With the material parameters calibrated, we show that the experimental stress-biased strain–temperature-cycling and shape-memory effect responses are qualitatively well-reproduced by the constitutive model and the numerical simulations. We also show the capability of our constitutive mode in studying the response of SMAs undergoing coupled thermo-mechanical loading and also multi-axial loading conditions by studying the deformation behavior of a stent unit cell.  相似文献   

15.
A new macro-scale model of shape memory alloys is developed within the framework of generalized standard materials with internal constraints [Moumni, Z., 1995. Sur la modélisation du changement de phase à l’état solide. Ph.D. Thesis, École Nationale Supérieure des Ponts et Chaussées]. It is shown that the introduction of two state variables: the martensite volume fraction and the martensite orientation strain tensor, is sufficient to account for several effects exhibited by SMAs subject to thermomechanical loading, namely: self-accommodation, orientation and reorientation or martensite, as well as superelasticity and one-way shape memory. These phenomena are simulated using the same set of constitutive equations and evolution laws. A simple procedure for identifying the parameters of the model is described in detail and a validation against experimental data is conducted. The model is then used to analyze a 3D SMA structure representing a superelastic stent. Cyclic loading and other pertaining phenomena like training and two-way shape memory are considered in the second part of this paper.  相似文献   

16.
Shape Memory Alloys (SMAs) undergo an austenite–martensite solid–solid phase transformation which confers its pseudo-elastic and shape memory behaviours. Phase transformation can be induced either by stress or temperature changes. That indicates a strong thermo-mechanical coupling. Tensile test is one of the most popular mechanical test, allowing an easy observation of this coupling: transformation bands appear and enlarge giving rise to a large amount of heat and strain localisation. We demonstrate that the number of transformation bands is strongly associated with the strain rate. Recent progress in full field measurement techniques have provided accurate observations and consequently a better understanding of strain and heat generation and diffusion in SMAs. These experiments bring us to suggest the creation of a new one-dimensional thermomechanical modelling of the pseudo-elastic behaviour. It is used to simulate the heat rise, strain localisation and thermal evolution of the NiTi SMA sample submitted to tensile loading.  相似文献   

17.
Instrumented indentation test has been extensively applied to study the mechanical properties such as elastic modulus of different materials. The Oliver–Pharr method to measure the elastic modulus from an indentation test was originally developed for single phase materials. During a spherical indentation test on shape memory alloys (SMAs), both austenite and martensite phases exist and evolve in the specimen due to stress-induced phase transformation. The question, “What is the measured indentation modulus by using the Oliver–Pharr method from a spherical indentation test on SMAs?” is answered in this paper. The finite element method, combined with dimensional analysis, was applied to simulate a series of spherical indentation tests on SMAs. Our numerical results indicate that the measured indentation modulus strongly depends on the elastic moduli of the two phases, the indentation depth, the forward transformation stress, the transformation hardening coefficient and the maximum transformation strain. Furthermore, a method based on theoretical analysis and numerical simulation was established to determine the elastic moduli of austenite and martensite by using the spherical indentation test and the Oliver–Pharr method. Our numerical experiments confirmed that the proposed method can be applied in practice with satisfactory accuracy. The research approach and findings can also be applied to the indentation of other types of phase transformable materials.  相似文献   

18.
形状记忆合金由马氏体相和奥氏体相动态组成,其行为实质上是两相各自行为的动态组合,根据实验现象,假设在一定的变形范围内,马氏体相为弹塑性而奥氏体相为线弹性,基于经典塑性理论和混合物理论,结合Tanaka的相变描述,得到了形状记忆合金的一种本构描述,对不同温度下形状记忆合金Au-47.5at.%Cd的铁弹性、拟弹性和形状记忆特性进行了分析,取得了与实验相吻合的结果。  相似文献   

19.
Metal forming processes are important technologies for the production of engineering structures. In order to optimize the resulting material properties, it becomes necessary to simulate the entire forming process by taking into account physical effects such as phase transformations. In this work, we concentrate on the phase change from austenite to martensite and present a macroscopic material model, which combines the effect of classical plasticity with the effect of transformation induced plasticity (TRIP). An extensive experimental database for a low-alloy steel is used for parameter identification, thus taking into account the effects of uniaxial compressive and tensile stress on the kinetics of phase transformation at different temperatures. For temperatures below the martensite start temperature with simultaneous stresses above the yield limit, it is difficult to obtain experimental data. Consequently, a numerical homogenization technique is employed for this case. In a further part of this paper, an effective integration scheme is provided, which is implemented into a commercial finite element program. In a finite element simulation, the austenite to martensite phase transformation in a shaft subjected to thermal loading is investigated.  相似文献   

20.
Transformation induced plasticity is defined as the plastic flow arising from solid state phase transformation processes involving volume and/or shape changes without overlapping the yield surface. This phenomenon occurs in shape memory alloys (SMAs) having significant influence over their macroscopic thermomechanical behavior. This contribution presents a macroscopic three-dimensional constitutive model to describe the thermomechanical behavior of SMAs including classical and transformation induced plasticity. Comparisons between numerical and experimental results attest the model capability to capture plastic phenomena. Both uniaxial and multiaxial simulations are carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号