首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
In the paper, the influences of water flux on both discharge current and onset voltage were studied. Both charging and capturing particles of atomizing corona discharges were investigated when the magnetic field was used or not. The charge number of droplets and their sizes were calculated after some parameters were measured by Millikan oil drop instrument. In addition, the capturing ability of atomizing corona discharge pre-charger with magnetic field was compared with the traditional pre-charger. Eventually, the charging mechanism of atomizing corona discharge with magnetic field was analyzed through the above-mentioned experimentation and comparison. The result shows that the smallest onset voltage will appear with water flow increase in the atomizing corona discharge, and that the ion concentration between electrodes is the highest in the atomizing corona discharge charger with magnetic field than any other pre-charger, which is conducive for charging dust particles. Hence the new pre-charging technique is promising for capturing fine aerosol particles in electrostatic precipitators.  相似文献   

2.
《Journal of Electrostatics》2005,63(6-10):609-614
In order to understand electrostatic discharges occurring between a grounded electrode and a space charge cloud, the positive discharges were experimentally caused by negatively charged particles cloud. The discharges were initiated by locating a grounded sphere electrode at the inside or outside of the charged powder particles blown by an air flow. The luminous aspect and the discharge current were observed for the grounded sphere electrode with various diameters. Positive streamer corona discharges extended from it. The luminous aspect, peak value of the discharge current and the interval of the discharge significantly depend on the diameter of the grounded sphere electrode as well as its position.  相似文献   

3.
Corona discharge is a self-sustained discharge which appears at electrodes with a small radius curvature in gas insulation. An almost invisible glow occurs just above the inception voltage. Corona phenomenon is mainly used in electro-technological processes to obtain space charge for electrostatic precipitation, separation of different particles, electrostatic liquid or solid coating, neutralization of space charge, etc. All of these processes rely on a strong nonhomogeneous electric field generated by a point – plate electrode system. When the critical value of the applied voltage is reached, the ionization processes near the point electrode start and give rise to the current between two electrodes. If the pointed electrode is positive, it is possible to observe an anomaly of the current – voltage (I-U) characteristic for the point-plate space. It means that while the voltage is raising the current density decreases in a narrow voltage area (2–3 kV). The anomaly was technically named as negative differential conductivity (dI/dU < 0). Unstable current can have a negative influence on electro-technological processes. The anomaly was detected for different shapes and materials of the electrode as well as for various temperatures and distances between electrodes. An oxidation layer, which appears on the metal electrode, also influences the ionization processes near the pointed electrode and causes a decrease of a current. In this paper measuring of the discharge activity in a point – plate electrode system is presented. Ionization of gas atoms and molecules in a high electric field and the following recombination of electrons and positive ions in the corona region can give rise to high-energy photons which produce new electrons in the field of discharge. Corona discharges are detected by DayCor Corona camera which can register UV emission generated by corona in a day light. The experiment was conducted with various shapes of the pointed electrode and distances between the high voltage and the grounded electrode under applied direct voltage with positive and negative polarity.  相似文献   

4.
Atmospheric pressure needle-to-plane discharges have been explored experimentally in electrode gaps from 100 μm to 400 μm. These discharges can be self-sustained and follow the form of existing empirical formulae describing the current-voltage characteristics of corona discharge. The discharge can also be self-sustained by its lower sustaining voltage applied between the two electrodes once it is ignited by the initial high output voltage from power supply. The experiments of charging aerosol particles by the self-sustaining discharge operating with a lowered power have shown that for particles with a diameter of 46 nm, the charging efficiency attained 43.6%.  相似文献   

5.
Non-intrusive two-phase fluid pumping based on an electrohydrodynamically (EHD) induced flow phenomenon with free liquid surface exposed to gas-phase corona discharges is experimentally investigated. Dielectric liquid flow generated near a corona discharge electrode progresses toward an inclined plate electrode, and then climbs up the surface against the gravitational force for an air-wave (AW) type EHD pump. The AW type EHD pump is operated on ionic wind field along the inclined plate electrode. The pumping performance of time-averaged liquid flow rate and the liquid-phase flow motion are characterized. The liquid flow characteristics related to a dimensionless parameter of corona discharge fields are presented.  相似文献   

6.
An analysis of the electrostatic gas cleaning fundamental phenomenon shows an essential influence of discharge electrode construction on the gas cleaning process efficiency.In the physical model tests there were used rigid discharge electrodes with corona emitting elements of various geometries. Different constructions of discharge electrode were tested in the aspect of discharge current uniform distribution on collecting electrode surfaces. Measurements of discharge current distribution has been carried out for discharge electrodes with different spike shapes and in different electric field geometry. The research aim was to determine the optimal discharge electrode construction ensuring high collection efficiency of fine particles. Collection efficiency measurements of selected fly ash samples (from coal fired boilers) were carried out on a laboratory testing bench in a horizontal electrostatic precipitator model.  相似文献   

7.
A laboratory electrostatic precipitator (ESP) together with a bipolar pre-charger has been designed for studying charge-induced agglomeration and fine particle collection. In terms of particle numbers, the ESP collection efficiency drops to its minimum of near 90% for particles with diameters of near 0.2 μm and 3 μm. For other particles, its value is around 94%–95%. By using the bipolar pre-charger, the grade efficiency can be significantly increased for all particle sizes due to the charge-induced particle agglomeration. The grade collection efficiency rises to about 95%–98% for all size particles.  相似文献   

8.
Magnetically enhanced, capacitive RF discharges (called RF magnetrons or MERIE discharges) are playing an increasing role in thin film etching for integrated circuit processing. In these discharges, a weak DC magnetic field is imposed, lying parallel to the powered electrode surface. The authors determine the RF power transferred to the discharge electrons by the oscillating electron sheath in the presence of the magnetic field. Using this, along with particle and energy conservation, they obtain discharge parameters such as the ion flux and ion bombarding energy at the powered electrode as functions of pressure, RF power, and the magnetic field. Some results of the model show good agreement with experiments done on a commercial MERIE system  相似文献   

9.
Experimental visualization for ionic wind motion originated from DC corona discharges in a needle-plate electrode system has been investigated. A vapor-phase biacetyl tracer with laser-induced phosphorescence emission is used for optically characterizing the ionic wind profile. The ionic wind blows the excited biacetyl molecules away in continuing the visible phosphorescence emission for a long radiative lifetime. The captured image with elapsing time from the excitation presents the shifting location of radiative tracer along the ionic wind direction. The experimental results show the ionic wind profile enhanced in the electric field direction corresponding to the corona discharge progress. Especially, the ionic wind near an initiating point of corona discharges is focused as an advantage of this optical technique. The ionic wind velocity along the electrode axis can be obtained at the location close enough to the corona discharge initiation point, and the velocity at 0.5 mm from the discharge point is figured out as 9.3 to 19.2 m/s under the condition of the EHD Reynolds number of 0.95×103 to 2.1×103.  相似文献   

10.
Results of spectroscopic investigations and current-voltage characteristics of corona discharge and back discharge on fly-ash layer, generated in point-plane electrode geometry in air at atmospheric pressure are presented in the paper. The characteristics of both discharges are similar but differ in the current and voltage ranges of all the discharge forms distinguished during the experiments. Three forms of back discharge, for positive and negative polarity, were investigated: glow, streamer and low-current back-arc. In order to characterize ionisation and excitation processes in back discharge, the emission spectra were measured and compared with those obtained for normal corona discharge generated in the same electrode configuration but with fly ash layer removed. The emission spectra were measured in two discharge zones: near the tip of needle electrode and near the plate. Visual forms of the discharge were recorded with digital camera and referred to current-voltage characteristics and emission spectra. The measurements have shown that spectral lines emitted by back discharge depend on the form of discharge and the discharge current. From the comparison of the spectral lines of back and normal discharges an effect of fly ash layer on the discharge morphology can be determined. The recorded emission spectra formed by ionised gas and plasma near the needle electrode and fly ash layer are different. It should be noted that in back arc emission, spectral lines of fly ash layer components can be distinguished. On the other hand, in needle zone, the emission of high intensity N2 second positive system and NO γ lines can be noticed. Regardless of these gaseous lines, also atomic lines of dust layer were present in the spectrum. The differences in spectra of back discharge for positive and negative polarities of the needle electrode have been explained by considering the kind of ions generated in the crater in fly ash layer. The aim of these studies is to better understand the discharge processes encountered in electrostatic precipitators.  相似文献   

11.
Results of spectroscopic investigations of back discharge generated in point-plane electrode geometry in ambient air at atmospheric pressure are presented in the paper. The back discharge was generated for the plate electrode covered with fly ash layer. To characterize the discharge process, the emission spectra were measured for the back discharges and compared with those obtained for corona discharge generated in the same electrode configuration but with dielectric layer removed. The measurements have shown that spectral lines emitted by the back discharge depend on the forms of discharge and the discharge current. From comparison of spectral lines of back and normal discharges an effect of the dust layer on discharge morphology can be determined. In normal conditions, the emission spectra are dominated by atmospheric components (molecular nitrogen, atomic oxygen and nitrogen) but for back-discharges, additional lines due to elements and compounds in fly ash were also identified. The studies of back discharge were undertaken because this type of discharge decreases the collection efficiency in electrostatic precipitators.  相似文献   

12.
王维  杨兰均  刘帅  黄易之  黄东  吴锴 《物理学报》2015,64(10):105204-105204
空气电晕放电离子风激励器无需旋转部件, 仅通过消耗电能就能直接产生驱动力, 它是一种新型的动力技术, 备受国内外航空航天界的广泛关注. 目前对空气电晕放电离子风激励器的推力产生机理虽有各种解释, 但是现有理论均不能统一各种条件下的实验结果, 仍需要开展进一步的分析与研究. 本文以线-铝箔电极电晕放电激励器为研究对象, 通过实验研究发现作用在线电极与铝箔电极上的静电力不对称, 而且改变铝箔电极纵向高度和气压均能影响激励器的推力大小; 通过理论分析, 考虑电晕层与空间电荷的影响, 建立了线-铝箔电极电晕放电激励器的推力计算模型, 其计算值与实测值比较一致. 基于上述实验现象与理论建模分析, 本文认为线-铝箔电极电晕放电激励器的推力主要来源于线电极电晕产生的空间电荷对电极系统产生了不对称静电力作用, 使激励器出现净静电力作用.  相似文献   

13.
Results of spectroscopic investigations and current–voltage characteristics of electrical discharges between a needle and plate electrodes in a gas mixture simulating flue gases from coal fired power plants at atmospheric pressure are presented in the paper. In these investigations, back discharge was generated at the plate electrode covered with fly ash layer in order to simulate the conditions similar to those in electrostatic precipitators. To characterize the physical processes in back discharges, the emission spectra were measured and compared with those obtained for normal corona discharge generated in the same electrode configuration but with fly ash removed from the electrode. The emission spectra provide information on elemental and molecular composition of the layer. It was also shown that discharge characteristics in flue gas are quite different from those occurring in ambient air.  相似文献   

14.
This project presents the results of investigation of current/voltage characteristics of brush type discharge electrodes (BTDE) in tube type electrostatic precipitators and the effect on operation. Experimental investigations were conducted with discharge electrodes of different wire diameter and different brush diameter. The effect of electrode geometry on current/voltage behavior was recorded. Corona current with brush type discharge electrodes was modeled and compared with experimental data. Brush type discharge electrodes produce an enhanced corona current compared with wire type discharge electrodes. Limited enhanced corona has improving effect on collection efficiency. An adjusted correlation was therefore deduced from experimentally obtained current/voltage data with BTDE.  相似文献   

15.
《Journal of Electrostatics》2005,63(6-10):643-647
The aim of the present paper is to introduce a simple experimental technique for estimating the corona charging conditions of insulating granules that form a layer at the surface of the grounded electrode of roll-type electrostatic separators. The basic idea consists in measuring the potential at any point on the surface of this layer by means of an electrostatic probe. The capacity of the probe–layer system being constant, the measured potential is proportional to the charge. The results clearly show that the charges imparted to the particles in the corona discharge depend on their positions at the surface of the electrode and on the inter-electrode spacing. This observation could be of use, for instance, to particle charging simulations performed as a preliminary step of any feasibility study of new electrostatic separation applications.  相似文献   

16.
牛宗涛  章程  马云飞  王瑞雪  陈根永  严萍  邵涛 《物理学报》2015,64(19):195204-195204
脉冲电源驱动的滑动放电能够在大气压下产生高能量、高功率密度的低温等离子体. 为了研究微秒脉冲电源在针-针电极结构中产生滑动放电的特征, 本文采用电压幅值为0–30 kV, 脉冲宽度约8 μs, 脉冲重复频率为1–3000 Hz的微秒脉冲电源, 通过测量电压、电流波形和拍摄放电图像, 研究了微秒脉冲滑动放电的电特性. 实验结果表明, 随着施加电压的增加微秒脉冲滑动放电存在三种典型的放电模式: 电晕放电、弥散放电和类滑动放电. 不同放电模式的电压、电流波形和放电图像之间差异显著. 脉冲重复频率对微秒脉冲滑动放电特性有影响, 表现为当气体流量较小(2 L/min)时, 类滑动放电的放电通道随着脉冲重复频率的增大逐渐集中, 而当气体流量较大(16 L/min)时, 类滑动放电的放电通道随着脉冲重复频率的增大逐渐分散. 不同气流下重复频率对滑动放电特性的影响与放电中粒子的记忆效应和气流的状态有关.  相似文献   

17.
《Journal of Electrostatics》2006,64(3-4):203-214
A methodology is proposed for the measurement of a number of parameters relevant to the performance evaluation of aerosol corona chargers. These parameters are intrinsic and extrinsic charging efficiencies, and diffusion and electrostatic particle losses. The methodology is essentially the same as that used in earlier works, except that free ions are removed just after the charger outlet in order to minimize the extent of possible after-charging effects which might lead to measurement errors. However, the experimental results show that after-charging is negligible and that, consequently, practically all the effective ion–particle collisions take place before the aerosol leaves the charger. Formation of new particles during corona discharge, which could in principle be an additional cause of measurement error, has not been observed in the working voltage range of the charger. Particle diffusion and electrostatic losses have been measured at varying values of the voltage applied to the charger: for a given particle size, diffusion loss decreases and electrostatic loss increases as the charger voltage is increased. The intrinsic charging efficiency increases with particle size and charger voltage. In contrast, the extrinsic charging efficiency, which is the parameter of importance in practice, attains a maximum value for a given charger voltage in such a manner that this optimum voltage depends on particle size.  相似文献   

18.
In this paper, a new electrostatic precipitator (ESP) with asymmetrical wire-to-cylinder configuration is investigated experimentally and numerically. The main objective is to evaluate the collection efficiency of high resistivity particles.The electrical measurements show that the corona discharge behavior is similar to that obtained in symmetrical wire-to-cylinder configuration. Results show that the collection efficiency can reach 95% in the case of negative corona discharge.In order to understand the particle trajectories inside the ESP, the experimental results are compared with numerical simulation by using a coupled model. Numerical results indicate that particles can be collected on the collecting electrode backside.  相似文献   

19.
The electric field in certain electrostatic devices can be modeled by a grounded plate electrode affected by a corona discharge generated by a series of parallel wires connected to a DC high-voltage supply. The system of differential equations that describe the behaviour (i.e., charging and motion) of the conductive particle in such an electric field has been numerically solved, using several simplifying assumptions. Thus, it was possible to investigate the effect of various electrical and mechanical factors on the trajectories of conductive particles. This model has been employed to study the behaviour of coal particles in fly-ash corona separators.  相似文献   

20.
The aim of this paper is to highlight the number evolution of free electrons in the drift region of a wire-cylinder electrostatic precipitator in negative voltage depends on the experimental parameters, more particularly of gas composition. A numerical model of the negative DC corona discharge developed by Chen et al. was used and modified to investigate the negative discharge corona for different gases. A parametric study was conducted to examine the effect on the electron distribution of operating conditions. The results showed the electron concentration increases with temperature, decreases when the pressure increases, and is closely related to gas composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号