首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Polyhedron》2007,26(9-11):1849-1858
Three compounds composed of phenazine and copper chloride have been prepared and studied by infrared spectroscopy, X-ray diffraction, and variable temperature magnetization. The compounds synthesized and studied are: Cu(phenazine)Cl2 (1), (phenazinium)2CuCl4 · H2O (2), and [Cu(phenazine)Cl2 · H2O]2 (3). Compounds 1 and 2 are described as antiferromagnetic Heisenberg chains with exchange constants ∣J∣/kB = 33.8 K and 8.6 K, respectively.  相似文献   

2.
Tetragonal copper ferrite (CuFe2O4) nanofibers were fabricated by electrospinning method using a solution that contained poly(vinyl pyrrolidone) (PVP) and Cu and Fe nitrates as alternative metal sources. The as-spun and calcined CuFe2O4/PVP composite samples were characterized by TG-DTA, X-ray diffraction, FT-IR, and SEM, respectively. After calcination of the as-spun CuFe2O4/PVP composite nanofibers (fiber size of 89 ± 12 nm in diameter) at 500 °C in air for 2 h, CuFe2O4 nanofibers of 66 ± 13 nm in diameter having well-developed tetragonal structure were successfully obtained. The crystal structure and morphology of the nanofibers were influenced by the calcination temperature. After calcination at 600 and 700 °C, the nature of nanofibers changed which was possibly due to the reorganization of the CuFe2O4 structure at high temperature, and a fiber structure of packed particles or crystallites was prominent. Crystallite size of the nanoparticles contained in nanofibers increases from 7.9 to 23.98 nm with increasing calcination temperature between 500 and 700 °C. Room temperature magnetization results showed a ferromagnetic behavior of the calcined CuFe2O4 samples, having their specific saturation magnetization (Ms) values of 17.73, 20.52, and 23.98 emu/g for the samples calcined at 500, 600, and 700 °C, respectively.  相似文献   

3.
Silver diiron tris(oxomolybdate), α-AgFe2(MoO4)3, was synthesized in sealed silica tubes at 1050 K and is isostructural to α-NaFe2(MoO4)3, determined by single-crystal X-ray diffraction (space group P?1, a = 6.9320(7) Å, b = 6.9266(6) Å, c = 10.9732(13) Å, α = 81.197(8)°, β = 83.456(9)°, γ = 81.352(8)° at 300 K, Z = 2). The crystal structure is built up from both monomers and edge-sharing dimers of [FeO6]-octahedra, which are linked with each other by isolated [MoO4]-tetrahedra to a three-dimensional network. Ag ions are situated on a site with four near oxygen neighbours. Thermal expansion is most pronounced along the c-axis, while the angle α decreases with increasing temperature. Antiferromagnetic ordering is indicated by a sharp maximum in the temperature dependence of magnetization at 21.5(5) K, and a magnetic moment of 5.36(1) μB per Fe-ion was derived from the Curie constant in the paramagnetic region. The collinear antiferromagnetic structure with propagation vector k = (0,½,½) and an ordered magnetic moment of 4.62(9) μB per Fe-ion were deduced from neutron powder diffraction data and give evidence for an underlying magnetic interaction mechanism, resulting in rather strong and long-ranged couplings. Mössbauer spectroscopy shows a change in the electronic configuration on the two distinct Fe sites between room temperature and 150 K, accompanied by an increase of the average Fe–O distance for one site and a shrinking one for the other as expected for charge ordering in a mixed valence compound with Fe(II) and Fe(III).  相似文献   

4.
5.
《Polyhedron》2005,24(16-17):2557-2561
The single-crystal X-ray structure of the single-molecule magnet [Mn12O12(O2CC6H4-2-CH3)16(H2O)4] · CH2Cl2 · 2H2O (complex 1) is reported. Complex 1 is a new example of a “Jahn–Teller isomer”, since it has two Mn(III) ions with abnormally oriented Jahn–Teller elongation axes. Complex 1 has a lower activation energy (Ueff = 29 K) for magnetization reversal relative to other reported [Mn12O12] type molecules (e.g., Ueff = 70 K for Mn12Ac). Single-crystal low temperature magnetization measurements are reported that confirm that complex 1 is a single-molecule magnet. High-field electron paramagnetic resonance measurements were performed on a single crystal to give the spin Hamiltonian parameters.  相似文献   

6.
The ternary rare-earth metal boride carbides REBC (RE = Ce, Pr, Nd) were prepared by melting mixtures of the elements and subsequent annealing at temperatures between 1270 K and 1570 K. Their crystal structures were refined from single crystal X-ray diffraction data. They crystallize in the LaBC-type structure (space group P212121, Z = 20); CeBC: a = 8.5021(5) Å, b = 8.5217(7) Å, c = 12.3834(7) Å, R1 = 0.033 (wR2 = 0.059) for 2838 reflections with Io > 2σ(Io); PrBC: a = 8.4478(5) Å, b = 8.4719(8) Å, c = 12.325(1) Å, R1 = 0.031 (wR2 = 0.063) for 2564 reflections with Io > 2σ(Io); NdBC: a = 8.370(1) Å, b = 8.392(1) Å, c = 12.253(3) Å, R1 = 0.035 (wR2 = 0.086) for 4275 reflections with Io > 2σ(Io). The structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated two-dimensional square nets, leading to voids filled with B5C5 finite chains. The magnetism of the compounds PrBC and NdBC is characterized by the onset of ferromagnetism with Curie temperatures around 10 K and 8 K, respectively. The reduced effective paramagnetic moment μeff  1.8 μB as well as the weak magnetization at 6 K, 5 T is discussed.  相似文献   

7.
Nanostructured amorphous RuO2 · xH2O/C composite materials are prepared via a modified sol–gel process using glycolic acid. The glycolate anion, which dissociates from glycolic acid at pH 7, behaves as a stabilizer by adsorbing onto the RuO2 · xH2O surface, thus resulting in particles with a size of about 2 nm. As evidenced by zeta potential measurements, the surface charge of RuO2 · xH2O becomes more electronegative as the amount of glycolic acid increases. After heat treatment at 160 oC to remove the stabilizer, RuO2 · xH2O/C is found to exhibit an amorphous structure. The specific capacitance of RuO2 · xH2O/C particles (40 wt% Ru) prepared in the presence of glycolic acid (0.3 g L−1) is 462 F g−1, which is 30% higher than that of the material prepared in the absence of glycolic acid. Both the nanosized particles and the amorphous structure mainly contribute to this increase in the specific capacitance.  相似文献   

8.
To obtain reliable thermodynamic data for Na2S(s), solid-state EMF measurements of the cell Pd(s)|O2(g)|Na2S(s), Na2SO4(s)|YSZ| Fe(s), FeO(s)|O2(g)ref| Pd(s) were carried out in the temperature range 870 < T/K < 1000 with yttria stabilized zirconia as the solid electrolyte. The measured EMF values were fitted according to the equation Efit/V (±0.00047) = 0.63650  0.00584732(T/K) + 0.00073190(T/K) ln (T/K). From the experimental results and the available literature data on Na2SO4(s), the equilibrium constant of formation for Na2S(s) was determined to be lg Kf(Na2S(s)) (±0.05) = 216.28  4750(T/K)−1  28.28878 ln (T/K). Gibbs energy of formation for Na2S(s) was obtained as ΔfG(Na2S(s))/(kJ · mol−1) (±1.0) = 90.9  4.1407(T/K) + 0.5415849(T/K) ln (T/K). By applying third law analysis of the experimental data, the standard enthalpy of formation of Na2S(s) was evaluated to be ΔfH(Na2S(s), 298.15 K)/(kJ · mol−1) (±1.0) = −369.0. Using the literature data for Cp and the calculated ΔfH, the standard entropy was evaluated to S(Na2S(s), 298.15 K)/(J · mol−1 · K−1) (±2.0) = 97.0.  相似文献   

9.
10.
The reaction of copper(II) bromide with 2-methylthiopyrazine (meSpz) in THF/CH2Cl2 gave crystals of [Cu(meSpz)Br2]n. The compound crystallizes in the monoclinic space group C2/m: a = 13.754(6) Å, b = 6.825(2) Å, c = 9.731(4) Å, β = 104.598(8)°. The structure comprises ladders where the rungs of the ladder are formed by bridging bromide ions and the rails are formed by bridging meSpz molecules. Magnetic susceptibility data over the range 1.8–325 K was fit to a strong-rung ladder model resulting in J/krung = ?39.79(17) K and J/krail = ?18.0(4) K.  相似文献   

11.
Some heterogeneous reactions of oxide ion exchange (carbonate ion dissociation and magnesium oxide dissolution) in the molten {KCl + LiCl} eutectic at temperatures of (873, 973 and 1073) K were studied using an electrochemical cell with an oxygen membrane electrode Pt(O2)|ZrO2(Y2O3). The dissociation constant of the CO32− was found to increase with increasing temperature: pK (873 K)=(2.39 ± 0.05); pK (973 K)=(1.81 ± 0.09); pK (1073 K)=(1.53 ± 0.08). Removal of CO2 from the gas above the melt allows the complete transformation of CO32− to O2−. pPMgO values decrease more from (6.99 ± 0.08) to (5.41 ± 0.04). The oxobasicity indices, pI(KCl+LiCl), were calculated from the solubility data to be 3.2 at 873 K, 3.4 at 973 K, and 3.6 at 1073 K. This trend suggests an increase in acidity with increasing temperature of {KCl + LiCl}.  相似文献   

12.
[FeIII4(acac)6(Br-mp)2] (1) and [FeIII4(acac)6(tmp)2] (2) were obtained from the reaction of Fe(acac)2 with the appropriate tripodal alcohol. Both magnetic clusters show clear signatures for ferrimagnetic super exchange coupling. A fit of the DC susceptibility of 1 with the Kambe model gives J = ?8.2 ± 0.2 cm?1, with g = 1.96 ± 0.02. Powder AC susceptibility data display significant frequency dependence for both compounds. The observation of an out-of-phase component demonstrates that these molecules may be single-molecule magnets (SMMs). AC susceptibility data for frozen solutions of 1 and 2 in toluene also show an out-of-phase signal proving these molecules are SMMs in solution. Going from powder to solution, the χ″ signals shift to higher temperatures which points towards an increase in energy barrier for the magnetization relaxation.  相似文献   

13.
A calorimetric and thermodynamic investigation of two alkali-metal uranyl molybdates with general composition A2[(UO2)2(MoO4)O2], where A = K and Rb, was performed. Both phases were synthesized by solid-state sintering of a mixture of potassium or rubidium nitrate, molybdenum (VI) oxide and gamma-uranium (VI) oxide at high temperatures. The synthetic products were characterised by X-ray powder diffraction and X-ray fluorescence methods. The enthalpy of formation of K2[(UO2)2(MoO4)O2] was determined using HF-solution calorimetry giving ΔfH° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = −(4018 ± 8) kJ · mol−1. The low-temperature heat capacity, Ср°, was measured using adiabatic calorimetry from T = (7 to 335) K for K2[(UO2)2(MoO4)O2] and from T = (7 to 326) K for Rb2[(UO2)2(MoO4)O2]. Using these Ср° values, the third law entropy at T = 298.15 K, S°, is calculated as (374 ± 1) J · K−1 · mol−1 for K2[(UO2)2(MoO4)O2] and (390 ± 1) J · K−1 · mol−1 for Rb2[(UO2)2(MoO4)O2]. These new experimental results, together with literature data, are used to calculate the Gibbs energy of formation, ΔfG°, for both phases giving: ΔfG° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = (−3747 ± 8) kJ · mol−1 and ΔfG° (T = 298 K, Rb2[(UO2)2(MoO4)], cr) = −3736 ± 5 kJ · mol−1. Smoothed Ср°(Т) values between 0 K and 320 K are presented, along with values for S° and the functions [H°(T)  H°(0)] and [G°(T)  H°(0)], for both phases. The stability behaviour of various solid phases and solution complexes in the (K2MoO4 + UO3 + H2O) system with and without CO2 at T = 298 K was investigated by thermodynamic model calculations using the Gibbs energy minimisation approach.  相似文献   

14.
《Polyhedron》2005,24(16-17):2215-2221
The reaction of MnX2 · 4H2O (X = Cl or Br) with 2,6-bis(hydroxymethyl)-4-methylphenol (H3L) and NaOH in methanol solution yielded two tetranuclear manganese complexes, [Mn4(HL)4(MeOH)4Cl2] (1) and [Mn4(HL)4(MeOH)4Br2] (2). Both compounds crystallize in the monoclinic space group C2/c with cell parameters: a = 26.0945(19) Å, b = 11.4999(8) Å, c = 21.2188(16) Å, β = 121.050(1)° and z = 4 for 1 · 2Et2O; a = 25.8145(3) Å, b = 11.6734(2) Å, c = 21.3956(3) Å, β = 120.1277(6)° and z = 4 for 2 · 2Et2O. Both complexes consist of a mixed-valence dicubane structure, which comprises two MnII and two MnIII ions. Magnetic susceptibilities and magnetization of complexes 1 and 2 in the solid state indicate that two clusters have an S = 9 ground state. Frequency-dependent out-of-phase signals of alternating current magnetic susceptibilities were observed in the low temperature range (<3 K) for both complexes indicating a slow magnetic relaxation.  相似文献   

15.
Four (solid–solid) phase transitions were detected in the temperature range of (9 to 300) K in polycrystalline [Cr(NH3)6](BF4)3 at TC1 = 240.7 K, TC2 = 108.0 K, TC3 = 91.9 K, and TC4 = 61.3 K by adiabatic calorimetry. The measurements by relaxation calorimetry were followed on lowering temperature from 20 K down to 0.35 K under six different external magnetic field values (9, 7, 5, 3, 1 and 0) T. For non-zero values of applied magnetic field well-defined Schottky anomaly appears. Magnetic heat capacity was calculated assuming the zero-field splitting for the decoupled Cr(III) ions. There is no discrepancy between the observed and calculated values. Isothermal magnetization curve recorded up to 5 T was measured at temperature of 1.8 K.  相似文献   

16.
The low-temperature heat capacity of NiAl2O4 and CoAl2O4 was measured between T = (4 and 400) K and thermodynamic functions were derived from the results. The measured heat-capacity curves show sharp anomalies peaking at around T = 7.5 K for NiAl2O4 and at T = 9 K for CoAl2O4. The exact cause of these anomalies is unknown. From our results, we suggest a standard entropy for NiAl2O4 at T = 298.15 K of (97.1 ± 0.2) J · mol?1 · K?1 and for CoAl2O4 of (100.3 ± 0.2) J · mol?1 · K?1.  相似文献   

17.
The preparation and characterization of [CoII-HS(dpa)(3,5-DBSQ)2] are presented first time. From the magnetic curve, the phase transition temperatures, Tc is 380 K. To our knowledge, the Tc value is the highest among the species exhibiting thermal valence tautomerism. After illumination with 532 nm light at 5 K, the magnetization values increase from μeff=1.73 to 2.0μB, showing valence tautomerism. The metastable state will recover to the original state with the increase of temperature. The alternate illumination with 532 and 830 nm light at 5 K can induce a reversible change in magnetization. The quick response to light means that this compound can be used for the development of optical–magnetic switch.  相似文献   

18.
Heat capacities of 2,2-dimethyl-1,3-propanediol(CH3)2C(CH2OH)2 were measured in the temperature range between T =  13 K and T =  350 K using an adiabatic calorimeter. The compound underwent a first-order phase transition at T =  (314.5  ±  0.1) K. The enthalpy and the entropy of transition were (12.52  ±  0.02)kJ · mol  1and (39.81  ±  0.08)J · K  1· mol  1, respectively. Measurement of the fusion peak by d.s.c. showed that the purity of the sample was 0.9999 mass fraction and the entropy of fusion was 9.9 J · K  1· mol  1. Another first-order phase transition was observed at T =  (60.4  ±  0.1) K with the associated entropy change of (2.93  ±  0.05)J · K  1· mol  1. Heat capacities of two deuterated samples,(CH3)2C(CH2OD)2 and(CD3)2C(CD2OD)2 , were also measured and the results were compared with those on the natural compound. Possible mechanisms of the transition have been discussed from the isotope effects on the thermodynamic quantities associated with the transition. Standard thermodynamic functions of the compounds are tabulated.  相似文献   

19.
Cu3[W(CN)8]2(pyrimidine)2(3-cyanopyridine)2 · 4H2O, a cyanide-bridged copper(II) octacyanotungstate(V) with two types of organic ligands (pyrimidine and 3-cyanopyridine), is prepared. In this compound, the coordination geometry of W is an 8-coordinated bicapped trigonal prism where five CN groups of [W(CN)8] are bridged to five Cu ions, and the remaining three CN groups are free. The coordination geometries of the three types of Cu ions (Cu1, Cu2, and Cu3) are 6-coordinated pseudo-octahedron. The cyano-bridged-Cu2–W–Cu3-layer is linked by a Cu1 pillar unit, and a cavity along the a axis, which is occupied by 3-cyanopyridine molecules and zeolitic water molecules, exists. The present compound shows ferrimagnetism with a Currie temperature of 7 K, a saturation magnetization of 2.9 μB, and a coercive field of 7 Oe at 2 K.  相似文献   

20.
Isopiestic vapor-pressure measurements were made for Rb 2SO 4(aq) from molalitym =  (0.16886 to 1.5679 )mol · kg  1atT =  298.15 K and from m =  (0.32902 to 1.2282 )mol · kg  1at T =  323.15 K, and for Cs 2SO4 (aq) from m =  (0.11213 to 3.10815 )mol · kg  1at T =  298.15 K and fromm =  (0.11872 to 3.5095 )mol · kg  1atT =  323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic information for these systems were reviewed and the isopiestic equilibrium molalities and dilution enthalpies were critically assessed and recalculated in a consistent manner. Values of the four parameters of an extended version of Pitzer`s model for osmotic and activity coefficients with an ionic-strength dependent third virial coefficient were evaluated for both systems at both temperatures, as were those of the usual three-parameter Pitzer model. Similarly, parameters of Pitzer`s model for the relative apparent molar enthalpies of dilution were evaluated at T =  298.15 K for both Rb 2SO 4(aq) and Cs 2SO 4(aq) for the more restricted range of m⩽ 0.101 mol · kg  1. Values of the thermodynamic solubility product Ks(Rb2 SO 4, cr, 298.15 K )  =  (0.1392  ±  0.0154) and the CODATA compatible standard molar Gibbs free energy of formationΔfGmo (Rb 2SO 4, cr, 298.15 K )  =   (1316.91  ±  0.59)kJ · mol  1, standard molar enthalpy of formationΔfHmo (Rb 2SO 4, cr, 298.15 K )  =   (1435.07  ±  0.60)kJ · mol  1, and standard molar entropy S mo(Rb2 SO 4, cr, 298.15 K )  =  (199.60  ±  2.88)J · K  1· mol  1were derived. A sample of one of the lots of Rb 2SO 4(s) used for part of our isopiestic measurements was analyzed by ion chromatography, and was found to be contaminated with potassium and cesium in amounts that significantly exceeded the claims of the supplier. In contrast, analysis by ion chromatography of a lot of Cs 2SO 4(s) used for some of our experiments showed it was highly pure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号