首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
林鹏  马剑  司有亮  吴凡雨  王国元  王建宇 《中国物理 B》2017,26(10):104501-104501
Crowd force by the pushing or crushing of people has resulted in a number of accidents in recent decades. The aftermath investigations have shown that the physical interaction of a highly competitive crowd could produce dangerous pressure up to 4500 N/m, which leads to compressive asphyxia or even death. In this paper, a numerical model based on discrete element method(DEM) as referenced from granular flow was proposed to model the evacuation process of a group of highly competitive people, in which the movement of people follows Newton's second law and the body deformation due to compression follows Hertz contact model. The study shows that the clogs occur periodically and flow rate fluctuates greatly if all people strive to pass through a narrow exit at high enough desired velocity. Two types of contact forces acting on people are studied. The first one, i.e., vector contact force, accounts for the movement of the people following Newton's second law. The second one, i.e., scale contact force, accounts for the physical deformation of the human body following the contact law. Simulation shows that the forces chain in crowd flow is turbulent and fragile. A few narrow zones with intense forces are observed in the force field, which is similar to the strain localization observed in granular flow. The force acting on a person could be as high as 4500 N due to force localization, which may be the root cause of compressive asphyxia of people in many crowd incidents.  相似文献   

2.
Polyethylene has an orthorhombic lattice for which nine elastic constants exist; they are obtained in terms of the intra- and intermolecular forces. Constants involved in the 6-12 Lennard-Jones potential approximating the London dispersion type of van der Waals' forces are obtained by computing the crystal potential energy and comparing it with the cohesive energy. First and second nearest-neighbor interactions are considered to establish relationship between the elastic constants and the interaction constants. The latter are obtained in terms of the C—C bond, stretching, bending, and repulsive force constants and the L-J potential constants. A limited type of central force assumption is applied. Values of Young and shear moduli are obtained along the three axes. The value along the chain compares with the experimentally determined and calculated values for oriented polyethylene. Young's modulus along the lateral direction is of the order of Young's modulus of bulk polyethylene, showing that intermo-lecular forces are the ones that determine the Young modulus of bulk polyethylene.  相似文献   

3.
Colin Marc Henein  Tony White 《Physica A》2010,389(21):4636-2260
Due, perhaps, to the historical division of crowd dynamics research into psychological and engineering approaches, microscopic crowd models have tended toward modelling simple interchangeable particles with an emphasis on the simulation of physical factors. Despite the fact that people have complex (non-panic) behaviours in crowd disasters, important human factors in crowd dynamics such as information discovery and processing, changing goals and communication have not yet been well integrated at the microscopic level. We use our Microscopic Human Factors methodology to fuse a microscopic simulation of these human factors with a popular microscopic crowd model. By tightly integrating human factors with the existing model we can study the effects on the physical domain (movement, force and crowd safety) when human behaviour (information processing and communication) is introduced.In a large-room egress scenario with ample exits, information discovery and processing yields a crowd of non-interchangeable individuals who, despite close proximity, have different goals due to their different beliefs. This crowd heterogeneity leads to complex inter-particle interactions such as jamming transitions in open space; at high crowd energies, we found a freezing by heating effect (reminiscent of the disaster at Central Lenin Stadium in 1982) in which a barrier formation of naïve individuals trying to reach blocked exits prevented knowledgeable ones from exiting. Communication, when introduced, reduced this barrier formation, increasing both exit rates and crowd safety.  相似文献   

4.
林鹏  马剑  卢兆明 《中国物理 B》2016,25(3):34501-034501
A series of accidents caused by crowds within the last decades evoked a lot of scientific interest in modeling the movement of pedestrian crowds. Based on the discrete element method, a granular dynamic model, in which the human body is simplified as a self-driven sphere, is proposed to simulate the characteristics of crowd flow through an exit. In this model, the repulsive force among people is considered to have an anisotropic feature, and the physical contact force due to body deformation is quantified by the Hertz contact model. The movement of the human body is simulated by applying the second Newton's law. The crowd flow through an exit at different desired velocities is studied and simulation results indicated that crowd flow exhibits three distinct states, i.e., smooth state, transition state and phase separation state. In the simulation, the clogging phenomenon occurs more easily when the desired velocity is high and the exit may as a result be totally blocked at a desired velocity of 1.6 m/s or above, leading to faster-to-frozen effect.  相似文献   

5.
This paper investigates vibration characteristics of footbridge induced by crowd random walking, and presents the application of multiple tuned mass dampers (MTMD) in suppressing crowd-induced vibration. A single foot force model for the vertical component of walking-induced force is developed, avoiding the phase angle inaccessibility of the continuous walking force. Based on the single foot force model, the crowd-footbridge random vibration model, in which pedestrians are modeled as a crowd flow characterized with the average time headway, is developed to consider the worst vibration state of footbridge. In this random vibration model, an analytic formulation is developed to calculate the acceleration power spectral density in arbitrary position of footbridge with arbitrary span layout. Resonant effect is observed as the footbridge natural frequencies fall within the frequency bandwidth of crowd excitation. To suppress the excessive acceleration for human normal walking comfort, a MTMD system is used to improve the footbridge dynamic characteristics. According to the random vibration model, an optimization procedure, based on the minimization of maximum root-mean-square (rms) acceleration of footbridge, is introduced to determine the optimal design parameters of MTMD system. Numerical analysis shows that the proposed MTMD designed by random optimization procedure, is more effective than traditional MTMD design methodology in reducing dynamic response during crowd-footbridge resonance, and that the proper frequency spacing enlargement will effectively reduce the off-tuning effect of MTMD.  相似文献   

6.
This paper presents a novel method of modelling crowd–bridge interaction using discrete element theory (DET) to model the pedestrian crowd. DET, also known as agent-based modelling, is commonly used in the simulation of pedestrian movement, particularly in cases where building evacuation is critical or potentially problematic. Pedestrians are modelled as individual elements subject to global behavioural rules. In this paper a discrete element crowd model is coupled with a dynamic bridge model in a time-stepping framework. Feedback takes place between both models at each time-step. An additional pedestrian stimulus is introduced that is a function of bridge lateral dynamic behaviour. The pedestrians' relationship with the vibrating bridge as well as the pedestrians around them is thus simulated. The lateral dynamic behaviour of the bridge is modelled as a damped single degree of freedom (SDoF) oscillator. The excitation and mass enhancement of the dynamic system is determined as the sum of individual pedestrian contributions at each time-step. Previous crowd–structure interaction modelling has utilised a continuous hydrodynamic crowd model. Limitations inherent in this modelling approach are identified and results presented that demonstrate the ability of DET to address these limitations. Simulation results demonstrate the model's ability to consider low density traffic flows and inter-subject variability. The emergence of the crowd's velocity–density relationship is also discussed.  相似文献   

7.
8.
In this paper, flutter of functionally graded material (FGM) cylindrical shells under distributed axial follower forces is addressed. The first-order shear deformation theory is used to model the shell, and the material properties are assumed to be graded in the thickness direction according to a power law distribution using the properties of two base material phases. The solution is obtained by using the extended Galerkin's method, which accounts for the natural boundary conditions that are not satisfied by the assumed displacement functions. The effect of changing the concentrated (Beck's) follower force into the uniform (Leipholz's) and linear (Hauger's) distributed follower loads on the critical circumferential mode number and the minimum flutter load is investigated. As expected, the flutter load increases as the follower force changes from the so-called Beck's load into the so-called Leipholz's and Hauger's loadings. The increased flutter load was calculated for homogeneous shell with different mechanical properties, and it was found that the difference in elasticity moduli bears the most significant effect on the flutter load increase in short, thick shells. Also, for an FGM shell, the increase in the flutter load was calculated directly, and it was found that it can be derived from the simple power law when the corresponding increase for the two base phases are known.  相似文献   

9.
《Physics letters. A》2020,384(3):126080
In places with high-density pedestrian movements, irrational emotions can quickly spread out under emergency, which may eventually lead to asphyxiation and crushing. It was noticed that a pedestrian's emotion in crowd would change as a result of the influence from other pedestrians. Thus, to explore the dynamics of emotion contagion process in dense pedestrians, two types of pedestrian emotions, i.e., negative and positive have been identified. Taking into account the emotional transit of a pedestrian, a crowd movement model is established in the present paper. We simulate pedestrian movement in a region with periodic boundary condition to study the dynamics of emotional contagion in dense crowds. Influences of the initial negative pedestrian proportion, pedestrian crowd density, emotion influence radius, and dose factor on the transition of overall crowd emotion state have been investigated. We expect this study could provide theoretical suggestions for crowd management.  相似文献   

10.
The article Newton's Principle? (Speiser 1983) serves to propagate the view—long generally held but certainly erroneous—that the Principia (Cajori 1969) contains a proof that ‘all conic sections are solutions of [Newton's] universal law of gravitation’ (p. 149). It stops short, however, of expressing the more extreme commonly held misapprehension that the Principia gives—as it fallaciously purports to do—an outline of a proof that inverse-square force implies conic-section orbit; for the article goes on to say that only Johann Bernoulli succeeded in proving that the conic sections are the only solutions.  相似文献   

11.
Recently, we proposed a very simple quantum chemical model to simulate the effect of external forces acting on a single molecule [Mol. Phys. 107, 2403 (2009)]. It is based on optimizing the geometry of a molecule with an external force applied to selected pairs of nuclei. In this study we extend this model by considering interactions of external forces not only with the nuclei but also with their electrons, in particular their core electrons, which can be viewed as ‘rigidly’ connected to a nucleus. In the proposed revised model an external force acts on an object which consists of the nucleus of an atom and its 1s core electrons. It is shown in this study that such a model predicts the same conformational (structural) changes in a molecule as our simpler model where the external forces interact with the nuclei only. However, the magnitude of the forces required to cause these changes is now lower and within the range of forces used in real AFM experiments.  相似文献   

12.
The pedestrians can only avoid collisions passively under the action of forces during simulations using the social force model, which may lead to unnatural behaviors. This paper proposes an optimization-based model for the avoidance of collisions, where the social repulsive force is removed in favor of a search for the quickest path to destination in the pedestrian's vision field. In this way, the behaviors of pedestrians are governed by changing their desired walking direction and desired speed. By combining the critical factors of pedestrian movement, such as positions of the exit and obstacles and velocities of the neighbors, the choice of desired velocity has been rendered to a discrete optimization problem. Therefore,it is the self-driven force that leads pedestrians to a free path rather than the repulsive force, which means the pedestrians can actively avoid collisions. The new model is verified by comparing with the fundamental diagram and actual data. The simulation results of individual avoidance trajectories and crowd avoidance behaviors demonstrate the reasonability of the proposed model.  相似文献   

13.
We consider, in lowest order of the gravitational coupling constant G, the gravitational potential between two neutrons. As we have previously pointed out [1],the quantum (including spin) contributions to the gravitational field dominate for distances smaller than the Compton wavelength of the neutron. At such distances the gravitational force between two neutrons may be repulsive. In particular, the gravitational forces which are analogous to the familiar Darwin and Fermi forces of quantum electrodynamics are capable of stopping gravitational collapse. Our discussion is within the framework of Einstein's theory, but on a microscopic level. We conclude that gravitational collapse may be halted without the necessity of extending Einstein's theory à la Cartan or otherwise.  相似文献   

14.
On Newton's Earth-Moon-Test of 1665/66 Newton's proof on the earth-moon-system — whether the gravitation of the earth which gives freely falling bodies near the earth's surface an acceleration of g ≈ 982 cm/sec2 and decreasing proportional to the inverse square of the distance from the earth's centre fully compensates the centrifugal force of the moon orbiting around the earth — is reexamined using new observational values for g, the earth's dimensions and the constants of the moon's motion. A first order calculation of the disturbances in the moon's orbit caused by the gravitation of the sun shows that the mass of the moon in relation to the mass of the earth must be near to 1:81 if the moons average distance from the earth's center is assumed to be 384 400 km.  相似文献   

15.
A N-body problem “of goldfish type” is introduced, the Newtonian (“acceleration equal force”) equations of motion of which describe the motion of N pointlike unit-mass particles moving in the complex z-plane. The model—for arbitrary N—is solvable, namely its configuration (positions and velocities of the N “particles”) at any later time t can be obtained from its configuration at the initial time by algebraic operations. It features specific nonlinear velocity-dependent many-body forces depending on N2 arbitrary (complex) coupling constants. Sufficient conditions on these constants are identified which cause the model to be isochronous—so that all its solutions are then periodic with a fixed period independent of the initial data. A variant with twice as many arbitrary coupling constants, or even more, is also identified.  相似文献   

16.
We study the force between two circular electrodes in different configurations. A formula analogous to Kelvin's formula for the spheres is given in the case of equal disks held at the same potential and when one plate is earthed. An expression for the force at short distance between two arbitrarily charged disks is found: the generic case shows a logarithmic repulsive force, also for disks carrying charges of opposite sign. Some numerical computations support the results. A classification for the possible behaviors of the force is proposed on the basis of a decomposition of the capacitance matrix. It is shown that the forces depend strongly on the dimensionality of the contact zone between the conductors. The analysis is supported by a numerical computation carried for the case of two disks of different radii.  相似文献   

17.
Recently, atomic force microscopy (AFM) based force measurements have been applied biophysically and clinically to the field of molecular recognition as well as to the evaluation of dynamic parameters for various interactions between proteins and ligands in their native environment. The aim of this review is to describe the use of the AFM to measure the forces that control biological interaction, focusing especially on protein-ligand and protein-protein interaction modes. We first considered the measurements of specific and non-specific unbinding forces which together control protein-ligand interactions. As such, we will look at the theoretical background of AFM force measurement curves for evaluating the unbinding forces of protein-ligand complexes. Three AFM model dynamic parameters developed recently for use in protein-ligand interactions are reviewed: (i) unbinding forces, (ii) off rates, and (iii) binding energies. By reviewing the several techniques developed for measuring forces between biological structures and intermolecular forces in the literature, we show that use of an AFM for these applications provides an excellent tool in terms of spatial resolution and lateral resolution, especially for protein-protein and protein-ligand interactions.  相似文献   

18.
A recent assertion that inertial and gravitational forces are entropic forces is discussed. A more conventional approach is stressed herein, whereby entropy is treated as a result of relative motion between observers in different frames of reference. It is demonstrated that the entropy associated with inertial and gravitational forces is dependent upon the well known lapse function of general relativity. An interpretation of the temperature and entropy of an accelerating body is then developed, and used to relate the entropic force to Newton's second law of motion. The entropic force is also derived in general coordinates. An expression of the gravitational entropy of in‐falling matter is then derived by way of Schwarzschild coordinates. As a final consideration, the entropy of a weakly gravitating matter distribution is shown to be proportional to the self‐energy and the stress‐energy‐momentum content of the matter distribution.  相似文献   

19.
The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the ‘climb image force’ symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive ‘climb geometry’, arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth’s idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.  相似文献   

20.
Crowd simulation is rapidly becoming a standard tool for evacuation planning and evaluation. However, the many crowd models in the literature are structurally different, and few have been rigorously calibrated against real-world egress data, especially in emergency situations. In this paper we describe a procedure to quantitatively compare different crowd models or between models and real-world data. We simulated three models: (1) the lattice gas model, (2) the social force model, and (3) the RVO2 model, and obtained the distributions of six observables: (1) evacuation time, (2) zoned evacuation time, (3) passage density, (4) total distance traveled, (5) inconvenience, and (6) flow rate. We then used the DISTATIS procedure to compute the compromise matrix of statistical distances between the three models. Projecting the three models onto the first two principal components of the compromise matrix, we find the lattice gas and RVO2 models are similar in terms of the evacuation time, passage density, and flow rates, whereas the social force and RVO2 models are similar in terms of the total distance traveled. Most importantly, we find that the zoned evacuation times of the three models to be very different from each other. Thus we propose to use this variable, if it can be measured, as the key test between different models, and also between models and the real world. Finally, we compared the model flow rates against the flow rate of an emergency evacuation during the May 2008 Sichuan earthquake, and found the social force model agrees best with this real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号