首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A continuous time random walk (CTRW) imposes a random waiting time between random particle jumps. CTRW limit densities solve a fractional Fokker-Planck equation, but since the CTRW limit is not Markovian, this is not sufficient to characterize the process. This paper applies continuum renewal theory to restore the Markov property on an expanded state space, and compute the joint CTRW limit density at multiple times.  相似文献   

2.
From continuous time random walks to the fractional fokker-planck equation   总被引:1,自引:0,他引:1  
We generalize the continuous time random walk (CTRW) to include the effect of space dependent jump probabilities. When the mean waiting time diverges we derive a fractional Fokker-Planck equation (FFPE). This equation describes anomalous diffusion in an external force field and close to thermal equilibrium. We discuss the domain of validity of the fractional kinetic equation. For the force free case we compare between the CTRW solution and that of the FFPE.  相似文献   

3.
Anomalous transport is usually described either by models of continuous time random walks (CTRWs) or, otherwise, by fractional Fokker-Planck equations (FFPEs). The asymptotic relation between properly scaled CTRW and fractional diffusion process has been worked out via various approaches widely discussed in literature. Here, we focus on a correspondence between CTRWs and time and space fractional diffusion equation stemming from two different methods aimed to accurately approximate anomalous diffusion processes. One of them is the Monte Carlo simulation of uncoupled CTRW with a Le?vy α-stable distribution of jumps in space and a one-parameter Mittag-Leffler distribution of waiting times. The other is based on a discretized form of a subordinated Langevin equation in which the physical time defined via the number of subsequent steps of motion is itself a random variable. Both approaches are tested for their numerical performance and verified with known analytical solutions for the Green function of a space-time fractional diffusion equation. The comparison demonstrates a trade off between precision of constructed solutions and computational costs. The method based on the subordinated Langevin equation leads to a higher accuracy of results, while the CTRW framework with a Mittag-Leffler distribution of waiting times provides efficiently an approximate fundamental solution to the FFPE and converges to the probability density function of the subordinated process in a long-time limit.  相似文献   

4.
We consider a general class of discrete nonlinear Schrödinger equations (DNLS) on the lattice ${h\mathbb{Z}}$ with mesh size h > 0. In the continuum limit when h → 0, we prove that the limiting dynamics are given by a nonlinear Schrödinger equation (NLS) on ${\mathbb{R}}$ with the fractional Laplacian (?Δ) α as dispersive symbol. In particular, we obtain that fractional powers ${\frac{1}{2} < \alpha < 1}$ arise from long-range lattice interactions when passing to the continuum limit, whereas the NLS with the usual Laplacian ?Δ describes the dispersion in the continuum limit for short-range or quick-decaying interactions (e. g., nearest-neighbor interactions). Our results rigorously justify certain NLS model equations with fractional Laplacians proposed in the physics literature. Moreover, the arguments given in our paper can be also applied to discuss the continuum limit for other lattice systems with long-range interactions.  相似文献   

5.
We investigate the macroscopic diffusion of carriers in the multiple-trapping (MT) regime, in relation with electron transport in nanoscaled heterogeneous systems, and we describe the differences, as well as the similarities, between MT and the continuous-time random walk (CTRW). Diffusion of free carriers in MT can be expressed as a generalized continuity equation based on fractional time derivatives, while the CTRW model for diffusive transport generalizes the constitutive equation for the carrier flux.  相似文献   

6.
Derivations of continuum nonlocal models of non-Fickian (anomalous) transport require assumptions that might limit their applicability. We present a particle-based algorithm, which obviates the need for many of these assumptions by allowing stochastic processes that represent spatial and temporal random increments to be correlated in space and time, be stationary or non-stationary, and to have arbitrary distributions. The approach treats a particle trajectory as a subordinated stochastic process that is described by a set of Langevin equations, which represent a continuous time random walk (CTRW). Convolution-based particle tracking (CBPT) is used to increase the computational efficiency and accuracy of these particle-based simulations. The combined CTRW–CBPT approach enables one to convert any particle tracking legacy code into a simulator capable of handling non-Fickian transport.  相似文献   

7.
We study the two- and three-dimensional, superrenormalizable Edwards model and the self-avoiding walk model of polymers. Using a Schwinger-Dyson equation and upper and lower bounds on correlations in terms of “skeleton diagrams” [6] we establish the existence of a non-trivial continuum limit in the two- and three-dimensional, superrenormalizable Edwards model. We also prove that perturbation theory is asymptotic for the continuum correlations of these models.A fairly detailed analysis of the approach to the critical point in the self-avoiding walk model is presented. In particular, we show that η<1. In dimension d?4, we discuss rigorous consequences of the conjecture that η is non-negative: among other implications, we derive that the continuum limit is trivial and that γ=1, in d?5 dimensions, and that corrections to mean-field scaling laws are at most logarithmic in four dimensions.  相似文献   

8.
We obtain exact time-power series through 11th order for cooperative diffusion in a one-dimensional lattice gas with nearest-neighbor interactions. In the high-temperature limit (single-site exclusion one) mean field theory is exact and the model is soluble for arbitrary initial conditions. The exact solution is used to recast the time-power series for a general temperature as a series in the appropriate function obtained from the high-temperature limit. We discuss why more conventional methods of extracting power-law exponents for the asymptotic long-time behavior do not work well for this model.  相似文献   

9.
We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the ‘fluctuation-dissipation theorem’, the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the ‘fluctuation-dissipation theorem’ is satisfied, and this verifies that satisfying ‘fluctuation-dissipation theorem’ indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.  相似文献   

10.
We study the evolution of a monotone step train separating two facets of a crystal surface. The model is one-dimensional and we consider only the attachment-detachment-limited regime. Starting with the well-known ODEs for the velocities of the steps, we consider the system of ODEs giving the evolution of the “discrete slopes.” It is the l2-steepest-descent of a certain functional. Using this structure, we prove that the solution exists for all time and is asymptotically self-similar. We also discuss the continuum limit of the discrete self-similar solution, characterizing it variationally, identifying its regularity, and discussing its qualitative behavior. Our approach suggests a PDE for the slope as a function of height and time in the continuum setting. However, existence, uniqueness, and asymptotic self-similarity remain open for the continuum version of the problem.  相似文献   

11.
A lattice model with a spatial dispersion corresponding to a power-law type is suggested. This model serves as a microscopic model for elastic continuum with power-law non-locality. We prove that the continuous limit maps of the equations for the lattice with the power-law spatial dispersion into the continuum equations with fractional generalizations of the Laplacian operators. The suggested continuum equations, which are obtained from the lattice model, are fractional generalizations of the integral and gradient elasticity models. These equations of fractional elasticity are solved for two special static cases: fractional integral elasticity and fractional gradient elasticity.  相似文献   

12.
We calculate the long-time averages of populations in a system consisting of a discrete state coupled to a flat quasicontinuum by summing for each level the squares of the residues of the Fourier-transformed probebility amplitudes. We find that the long-time limit and the continuum limit may be interchanged.  相似文献   

13.
邓辉舫 《物理学报》1986,35(11):1436-1446
本文采用近年来在解释凝聚物质中的低频涨落、耗散和弛豫现象时普遍适用的一个新的非纯指数形式的等待时间分布函数(以下称WTDF)ψ(t),讨论了连续时间无规行走(以下称CTRW)问题的渐近解。得到了许多有意义的和与实验一致的结果。它们是:平均位移、色散迁移率、平均平方位移、色散扩散系数、Nernst-Einstein关系、方差与标准方差、点阵统计学、初始位置占有几率、色散电导率、色散电输运和记忆函数。所有结果表明:由这个WTDF ψ(t)所描写的CTRW过程在短时区内表现为非Markov的,在长时区内则表现为Markov的,即所有结果都含有一个与介质的微观结构有关的且决定着色散程度的单参数——红外发散指数n(0≤n<1)。n越大,色散越大。当n=0时,色散消失,所有结果立即退化成Markov即经典形式,这与已有的实验事实一致。 关键词:  相似文献   

14.
We study analytically the Ising model coupled to random lattices in dimension three and higher. The family of random lattices we use is generated by the large N limit of a colored tensor model generalizing the two-matrix model for Ising spins on random surfaces. We show that, in the continuum limit, the spin system does not exhibit a phase transition at finite temperature, in agreement with numerical investigations. Furthermore we outline a general method to study critical behavior in colored tensor models.  相似文献   

15.
16.
We study the continuum scaling limit of some statistical mechanical models defined by convex Hamiltonians which are gradient perturbations of a massless free field. By proving a central limit theorem for these models, we show that their long distance behavior is identical to a new (homogenized) continuum massless free field. We shall also obtain some new bounds on the 2-point correlation functions of these models. This article was processed by the author using the LATEX style filepljour1 from Springer-Verlag.  相似文献   

17.
We analyze a continuum limit of the finite non-periodic Toda lattice through an associated constrained maximization problem over spectral density functions. The maximization problem was derived by Deift and McLaughlin using the Lax–Levermore approach, initially developed for the zero dispersion limit of the KdV equation. It encodes the evolution of the continuum limit for all times, including evolution through shocks. The formation of gaps in the support of the maximizer is indicative of oscillations in the Toda lattice and the lack of strong convergence of the continuum limit. For large times, the maximizer tends to have zero gaps, which is the continuum analogue of the sorting property of the finite lattice. Using methods from logarithmic potential theory, we show that this behavior depends crucially on the initial data. We exhibit initial data for which the zero gap ansatz holds uniformly in the spatial parameter (at large times), and other initial data for which this uniformity fails at all times. We then construct an example of C smooth initial data generating, at a later time, infinitely many gaps in the support of the maximizer, while for even larger times, all gaps have closed. Received: 8 May 2000 / Accepted: 27 March 2001  相似文献   

18.
We present a general derivation of the non-Fickian behavior for the self-diffusion of identically interacting particle systems with excluded mutual passage. We show that the conditional probability distribution of finding a particle at position x(t) after time t, when the particle was located at x(0) at t=0, follows a Gaussian distribution in the long-time limit, with variance 2W(t) approximately t(1/2) for overdamped systems and with variance 2W(t) approximately t for classical systems. The asymptotic behavior of the mean-squared displacement, W(t), is shown to be independent of the nature of interactions for homogeneous systems in the fluid state. Moreover, the long-time behavior of self-diffusion is determined by short-time and large-scale collective density fluctuations.  相似文献   

19.
The transport behavior of a migrating particle in a disordered medium is exhibited in the solution of a transport equation derived from a coupled continuous time random walk (CTRW). A core aspect of CTRW is the spectrum of transitions in displacement s and time t, ψ(s,t), that characterizes the disordered system, which determine the transport. In many applications the CTRW approach has successfully accounted for the anomalous or non-Fickian nature of the particle plume propagation based on a power-law dependence ψ(t) in a decoupled p(s)ψ(t) approximation to ψ(s,t). For example, this power-law dependence in t derives from the complex Darcy flow fields in geological formations. Recently, the fully coupled CTRW was analyzed using a particle tracking approach, demonstrating that the decoupled approximation is valid only for a compact distribution of s. In this paper we solve the nonlocal-in-time transport equation with a ψ(s,t) containing a power-law dependence in both s (a Lévy-like distribution) and t, which necessitates the strong s,t coupling. We show enhanced transport behavior (relative to the plume propagation behavior reported in the literature) that derives from the rare large displacements in s (limited by the transition t). The interplay between the two coupled power laws is clearly shown in the changes in the breakthrough curves in the arrival times, dispersion and dependence on the velocity (v=s/t) distribution. Similar enhancements are exhibited in the particle tracking results.  相似文献   

20.
We construct a Backlund transformation and inverse scattering form for the generalized nonabelian Toda lattice. We investigate the continuum limit and we show that our model, in this limit, is equivalent to the self-dual sector of the three dimensionalSU(N) Yand-Mills field theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号