首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We review the schemes which have been implemented, in order to achieve quantum non-demolition (QND) measurements in the optical domain. The simplest schemes can be obtained using the optical Kerr effect, which yields a crossed-phase modulation coupling between two light beams. Other schemes use either independently generated squeezed light, or coupled-mode parametric amplifiers. These various schemes can be characterized using three criteria, which describe, respectively, the quality of the quantum measurement, the non-destruction of the signal, and the conditional variance of the output signal beam, given the output meter beam (quantum-state preparation criterion). We show that quantitative limits can be defined with respect to these criteria, delimiting classical and quantum domains of operation. Then we present in more detail a new experimental implementation of QND measurements, using three-level atoms inside a doubly-resonant optical cavity.  相似文献   

2.
Broadband high level squeezing was clearly observed from 100 kHz to 80 MHz using crystals Ba2NaNb5O15 of 5 mm length, MgO:LiNbO3 of 19 mm length and KNbO3 of 5.8 mm length. Maximum noise reductions detected on a spectrum analyzer were –1.2 dB (–24%), –1.25 dB (–25%), and –1.8 dB (–34%) for the three crystals, respectively. The maximum squeezing is limited mostly by optical index damage of the parametric crystals. A detailed analysis of the beam parameters traced along the pump beam, squeezed vacuum, etc. is given. A detailed discussion on the evaluation of the initial squeezed level is given. A preliminary experiment with compressed laser pulses to avoid the optical damage is also described.  相似文献   

3.
We analyze the principle of a very general and conceptually simple method for manipulating optical fields by coupling them into a matter waves Young double slit apparatus. The field, non resonant with the atoms, acts as a phase-retarding medium in one of the arms of the interferometer and shifts the atomic fringe pattern. The method constitutes a simple quantum nondemolition measuring scheme of the photon number. Non classical states such as Schrödinger cats and Fock states of the field are generated in the measurement process. The analysis of the atomic interferometer with optical retarding fields provides a very simple and striking illustration of basic concepts of the quantum measurement theory and of the principle of complementarity. This scheme, which would be very difficult to implement in the optical domain, is equivalent to a more feasible and recently proposed Ramsey interference method to measure small microwave fields with beams of Rydberg atoms.Associé au Centre National de la Recherche Scientifique et à l'Université Pierre et Marie Curie  相似文献   

4.
Optical gas detection in microsystems is limited by the short micron scale optical path length available. Recently, the concept of slow-light enhanced absorption has been proposed as a route to compensate for the short path length in miniaturized absorption cells. We extend the previous perturbation theory to the case of a Bragg stack infiltrated by a spectrally strongly dispersive gas with a narrow and distinct absorption peak. We show that considerable signal enhancement is possible. As an example, we consider a Bragg stack consisting of PMMA infiltrated by O2. Here, the required optical path length for visible to near-infrared detection (760 nm) can be reduced by at least a factor of 102, making a path length of 1 mm feasible. By using this technique, optical gas detection can potentially be made possible in microsystems.  相似文献   

5.
In Rydberg atoms subject to static and harmonic collinear electric fields, intrashell transition can be induced by the first order perturbation from a small perpendicular electric or magnetic field, or by effects of the second order in the major fields. Both mechanisms lead to resonances that are suppressed under certain conditions, and high-frequency interference oscillations in case of non-adiabatic field switching. Recent measurements of microwave ionization signals show very rich and fascinating structures similar to the ones predicted for intrashell mixing. We show that the observed ionization structures may be explained by diabatic electric-field ionization and the consistent use of perturbation theory for intrashell mixing. In particular, the dominant oscillation frequency is successfully interpreted in terms of interference between first and second order transition amplitudes. New predictions are provided. The present approach gives a comprehensive picture of intrashell transitions, which may be tested in future experiments designed to observe such transitions directly. Received 2 May 2002 / Received in final form 23 September 2002 Published online 21 January 2003 RID="a" ID="a"e-mail: Valentin.Ostrovsky@pobox.spbu.ru RID="b" ID="b"e-mail: horsdal@ifa.au.dk  相似文献   

6.
An isotropic medium with electrically removed centre of symmetry in which a fundamental wave at frequency generates the second harmonic at 2 is considered. The two waves give rise to self-acting effects modifying the refractive indices at and/or 2 (selfinduced ellipse rotation, optical Kerr effect). For this physical situation, an effective interaction Hamiltonian is introduced involving nonlinear coupling parameters, discussed versus the dc electric field and temperature as well as the density, concentration and molecular structure of the medium. The solutions of the respective quantum equations for the field operators at and 2 permit, in particular, the calculation of the variances for a novel process of second-harmonic generation by light, self-squeezed in an isotropic medium. It is shown that squeezing in the out-of-phase component of the second harmonic beam follows, with some delay, after self-squeezing in the in-phase component of the fundamental beam.Sponsored by the Polish Academy of Sciences, Project CPBP 01.12  相似文献   

7.
Previous work on the retrodictive theory of direct detection is extended to cover the homodyne detection of coherent optical signal states and . The retrodictive input state probabilities are obtained by the application of Bayes' theorem to the corresponding predictive distributions, based on the probability operator measure (POM) elements for the homodyne process. Results are derived for the retrodictive information on the complex amplitude of the signal field obtainable from the difference photocount statistics of both 4-port and 8-port balanced homodyne detection schemes. The local oscillator is usually assumed much stronger than the signal but the case of equal strengths in 4-port detection is also considered. The calculated probability distributions and error rates are illustrated numerically for values of signal and local oscillator strengths that extend from the classical to the quantum regimes.  相似文献   

8.
We demonstrate modified photon echoes in Eu3+:Y2SiO5 by controlling the inhomogeneous broadening of the optical transition in Eu3+. These modified photon echoes are shown to be capable of storing phase and amplitude modulation.  相似文献   

9.
We demonstrate coherent coupling of the quadrupole S1/2D5/2 optical transition of a single trapped 40Ca+ ion to the standing wave field of a high-finesse cavity. The dependence of the coupling on temporal dynamics and spatial variations of the intracavity field is investigated in detail. By precisely controlling the position of the ion in the cavity standing wave field and by selectively exciting vibrational state-changing transitions the ion’s quantized vibration in the trap is deterministically coupled to the cavity mode. We confirm coherent interaction of ion and cavity field by exciting Rabi oscillations with short resonant laser pulses injected into the cavity, which is frequency-stabilized to the atomic transition. Received: 23 August 2002 / Published online: 8 January 2003 RID="*" ID="*"Corresponding author. E-mail: christoph.becher@uibk.ac.at RID="**" ID="**"Present address: Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA  相似文献   

10.
We show that the conditional displacement operator acting upon arbitrary states of traveling waves can be well approximated by the action of a Kerr-medium placed between two beam splitters whose respective second ports are fed by highly excited coherent states. The scheme is deterministic, since it does not employ any detection event. Applications for generation of nonclassical states and measurement of Wigner function of arbitrary states are also considered.  相似文献   

11.
A scanning optical fluorescence microscope is suggested, whose active element (needle) is made of a crystal containing impurity ions or color centers subject to excitation by laser radiation. The excitation energy from a single impurity center at the very tip of the needle is transferred by the resonance dipole-dipole exchange mechanism to fluorescence centers on the surface of the sample under study. It is demonstrated that this approach can help attain a nanometer-high spatial resolution at a high sensitivity substantially exceeding in some cases the sensitivity of the standard near-field fluorescence microscopy technique. Various crystals and impurity centers, potentially most suitable for the implementation of the method under consideration, are briefly analyzed. Information is presented on the manufacture of sharp-pointed needles from LiF crystals containing F2-centers and the first observation of single F2-centers on their tips by the laser-photoelectron projection microscopy technique, which allows one to speak of the practical creation of the first active elements for the microscope suggested.Dedicated to Prof. F. P. Schäfer on the occasion of his 65th birthday.  相似文献   

12.
Deformed configuration mixing shell model based on Hartree-Fock states with extension to include isospin projection (DSMT) for two- and four-particle configurations (generated by particle-hole excitations) is applied to study the structure of the low-lying T = 0, 1 and 2 bands (or levels) in the even-even N = Z nuclei 52Fe and 72Kr. The pf-shell KB3 interaction for 52Fe and a modified Kuos interaction for 72Kr are employed in the calculations. In this first application of DSMT with four-particle T projection, low-spin (J 10) members of the T = 0, 1 and 2 bands in 52Fe are compared with experiment including the known E2 transition strengths. The agreement between DSMT and experiment is reasonably good. Similarly, the low-spin members of the observed (prolate) yrast band in 72Kr are also well described by DSMT.  相似文献   

13.
A theoretical study of an exciton confined in a quantum dot with the Woods–Saxon potential is presented. The great advantage of our methodology is that it enables confinement regimes by varying two parameters in the model potential. Calculations are made by using the method of the numerical diagonalization of the Hamiltonian matrix within the effective-mass approximation. The binding energies of the ground (L=0L=0) and first excited (L=1L=1) states are obtained as functions of the dot radius. Based on the computed energies and wave functions, the linear, the third-order nonlinear and the total optical absorption coefficients have been examined between the ground and the first excited states. The results are presented as a function of the incident photon energy for the different values of the dot radius and the barrier slope. It is found that the binding energy and the optical properties of the excitons in a quantum dot are strongly affected by the dot radius and the barrier slope of the confinement potential.  相似文献   

14.
The concept of a doubly resonant frequency doubler can be used for a variety of experiments concerning both classical phenomena like efficient frequency doubling at low power levels and quantum effects like squeezed states of light or Quantum Non Demolition (QND) measurements. In many of these experiments the strength of the nonlinear coupling of fundamental and second-harmonic modes is of crucial importance. First we treat the general theory for the calculation of the coupling parameter, which depends not only on properties of the nonlinear material but also on resonator geometry and some optical phases. On this basis we discuss in detail the situation for two different monolithic resonator geometries, namely a linear (standing-wave) and a ring (travelling-wave) cavity. Finally we compare theoretical predictions for these resonators to the experimentally achieved results.  相似文献   

15.
We analyze the influence of the dipole-dipole interaction between ground and excited state atoms on atomic cooling by velocity-selective coherent population trapping. We consider two three-level atoms in the -configuration, interacting with two counterpropagating laser fields as well as with the electromagnetic vacuum modes. The elimination of these modes in the Born-Markov approximation results in spontaneous decay, which is essential in providing the momentum diffusion necessary for cooling, as well as a two-body dipole-dipole interaction between ground-and excited-state atoms. The corresponding two-body master equation is solved numerically by Monte-Carlo wave-function simulations. Our main result is that although a dark state survives the inclusion of dipole-dipole interactions, the presence of this interaction can significantly slow down the cooling process for sufficiently high atomic densities.Dedicated to H. Walther on the occasion of his 60th birthdayStrictly speaking, VSCPT is not a true cooling mechanism. The final atomic distribution cannot be characterized by a temperature, so that there is some ambiguity in characterizing the cooling efficiency. We return to this point in Sect. 3  相似文献   

16.
The optical response of the intersubband excitation of multiple InAs/AlSb quantum wells embedded in a planar semiconductor microcavity has been studied through angle-dependent reflectance measurements. Using a resonator based on total internal reflection, a strong coupling is demonstrated between the intersubband optical transition and the cavity photon, with the attendant formation of intersubband polaritons. A giant vacuum-Rabi splitting 2ΩR was observed both at liquid helium temperatures () as well as at 300 K (), for a transition energy . The observed ratio is a record high value (14%) for any strongly-coupled systems, and demonstrates the huge potential of this material for the achievement of the ultra-strong coupling regime predicted theoretically.  相似文献   

17.
We present measurements of the infrared response of the quasi-one-dimensional organic conductor (TMTSF)2FSO3 along (E ) and perpendicular (E ) to the stacking axis as a function of temperature. Above the metal-insulator transition related to the anion ordering the optical conductivity spectra show a Drude-like response. Below the transition an energy gap of about 1500 cm-1 (185 meV) opens, leading to the corresponding charge transfer band in the optical conductivity spectra. The analysis of the infrared-active vibrations gives evidence for the long-range crystal structure modulation below the transition temperature and for the short-range order fluctuations of the lattice modulation above the transition temperature. We also report about a new infrared mode at around 710 cm-1 with a peculiar temperature behavior, which has so far not been observed in any other (TMTSF)2X salt showing a metal-insulator transition. A qualitative model based on the coupling between the TMTSF molecule vibration and the reorientation of electrical dipole moment of the FSO3 anion is proposed, in order to explain the anomalous behavior of this new mode.  相似文献   

18.
In this paper, we used the multiconfiguration Dirac-Fock method to compute with high precision the influence of the hyperfine interaction on the [Ar] P0 level lifetime in Zn-like ions for stable and some quasi-stable isotopes of nonzero nuclear spin between Z=30 and Z=92. The influence of this interaction on the [Ar] P P0 separation energy is also calculated for the same ions.  相似文献   

19.
The position of a slow atom passing through a standing-wave light field in an ultrahigh-finesse optical resonator can be measured by observing either the intensity of the light transmitted through the cavity or its phase. Apart from the periodicity of the standing wave, both techniques allow to determine the position of the particle with a resolution much better than the standard classical diffraction limit /2. Position measurements with uncertainty </20 seem to be possible with all-optical techniques.These notes were prepared to celebrate H. Walther's 60th birthday and to honour his pioneering contributions to some of the most lively fields of quantum optics  相似文献   

20.
Anti-photon     
It should be apparent from the title of this article that the author does not like the use of the word photon, which dates from 1926. In his view, there is no such thing as a photon. Only a comedy of errors and historical accidents led to its popularity among physicists and optical scientists. I admit that the word is short and convenient. Its use is also habit forming. Similarly, one might find it convenient to speak of the aether or vacuum to stand for empty space, even if no such thing existed. There are very good substitute words for photon, (e.g., radiation or light), and for photonics (e.g., optics or quantum optics). Similar objections are possible to use of the word phonon, which dates from 1932. Objects like electrons, neutrinos of finite rest mass, or helium atoms can, under suitable conditions, be considered to be particles, since their theories then have viable non-relativistic and non-quantum limits. This paper outlines the main features of the quantum theory of radiation and indicates how they can be used to treat problems in quantum optics.It is a pleasure to join in the 60th birthday celebration of the Director, Herbert Walther, of the Max-Planck-Institute for Quantum Optics at Garching, and wish him much happiness and many more years of his very great scientific creativity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号