首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
A collaborative study was conducted to evaluate a liquid chromatographic (LC) method with immunoaffinity column cleanup for determination of ochratoxin A. The method was tested at 3 concentration levels of ochratoxin A in barley, which represent possible future European regulatory limits. The test portion was extracted with acetonitrile-water by blending at high speed. The extract was filtered, diluted with phosphate-buffered saline (PBS), and applied to an ochratoxin A immunoaffinity column. The column was washed with water and the ochratoxin A eluted with methanol. The solvent was then evaporated and the residue redissolved in injection solvent. After injection of this solution onto reversed-phase LC column, ochratoxin A was measured by fluorescence detection. Eight samples of low level naturally contaminated barley and 2 samples of blank barley (ochratoxin A not found at the limit of detection of 0.2 microg/kg at the signal-to-noise ratio of 3 to 1) were sent, along with ampules of ochratoxin A, calibrant, and spiking solutions, to 15 laboratories in 13 different European countries. Test portions were spiked with ochratoxin A at levels of 4 ng/g, and recoveries ranged from 65 to 113%. Based on results for spiked samples (blind duplicates) and naturally contaminated samples (blind duplicates at 3 levels), the relative standard deviation for repeatability (RSDr) ranged from 4 to 24%, and the relative standard deviation for reproducibility (RSDR) ranged from 12 to 33%. The method showed acceptable within- and between-laboratory precision, as evidenced by HORRAT values, at the low level of determination for ochratoxin A in barley.  相似文献   

2.
An interlaboratory study funded by the European Commission, Standards, Measurement and Testing Programme (4th Framework Programme) was performed to evaluate the effectiveness of an immunoaffinity column cleanup liquid chromatographic (LC) method for the determination of ochratoxin A in baby food at a possible future European regulatory limit (0.1 ng/g). The test portion is extracted in a blender with tert-butyl methyl ether (chosen to avoid use of chloroform but shown to give equivalent extraction efficiency) after addition of 0.5 mol/L phosphoric acid-2 mol/L sodium chloride solution. The extract is centrifuged and redissolved in a mixture of phosphate buffered saline solution and methanol. After removal of lypophilic substances with hexane, the extract is applied to an immunoaffinity column containing antibodies specific to ochratoxin A. The column is washed with water to remove the interfering compounds and the purified ochratoxin A is eluted with methanol. The separation and determination of ochratoxin A is performed by reversed-phase LC and detected by fluorescence after postcolumn derivatization (PCD) with ammonia. Test materials (baby food infant formulae), both spiked and naturally contaminated with ochratoxin A, were sent to 13 laboratories in 8 different European countries. Test portions were spiked at a level of 0.085 ng/g ochratoxin A. The average recovery for the spiked blank baby food was 108%. Based on results for spiked samples (blind pairs at 0.085 ng/g) as well as naturally contaminated samples (blind pairs at levels between 0.05 and 0.22 ng/g) the relative standard deviation for repeatability (RSDr) ranged from 18-36%. The relative standard deviation for reproducibility (RSDR) ranged from 29-63% and HORRAT values of between 0.4 and 0.9 were obtained.  相似文献   

3.
An interlaboratory study was performed on behalf of the Food Standards Agency to evaluate the effectiveness of an affinity column cleanup liquid chromatographic (LC) method for the determination of ochratoxin A in a variety of dried fruit at European regulatory limits. To ensure homogeneity before analysis, laboratory samples are normally slurried with water in the ratio of 5 parts fruit to 4 parts water, and test materials in this form were used in the study. The test portion was extracted with acidified methanol. The extract was filtered, diluted with phosphate-buffered saline, and applied to an affinity column. The column was washed and ochratoxin A was eluted with methanol. Ochratoxin A was quantified by reversed-phase LC. The use of post-column pH shift to enhance the fluorescence of ochratoxin A by the addition of 1.1 M ammonia solution to the column eluant is optional. Determination was by fluorescence. Currants, sultanas, raisins, figs, and mixed fruit (comprising dried pineapple, papaya, sultanas, prunes, dates, and banana chips), both naturally contaminated and blank (very low level), were sent to 24 collaborators in 7 European countries. Participants were asked to spike test portions of all test samples at a level equivalent to 5 ng/g ochratoxin A. Average recoveries ranged from 69 to 74%. Based on results for 5 naturally contaminated test samples (blind duplicates) the relative standard deviation for repeatability (RSDr) ranged from 4.9 to 8.7%, and the relative standard deviation for reproducibility (RSDR) ranged from 14 to 28%. The method showed acceptable within- and between-laboratory precision for all 5 matrixes, as evidenced by HORRAT values <1.3.  相似文献   

4.
5.
A collaborative study was conducted to evaluate the effectiveness of an immunoaffinity column cleanup liquid chromatography (LC) method for the determination of aflatoxin B1 and total aflatoxins at European regulatory limits. The test portion is extracted with methanol-water (8 + 2) for dried figs and paprika, and with methanol-water (8 + 2) plus hexane (or cyclohexane) for peanut butter and pistachios. The sample extract is filtered, diluted with phosphate buffer saline, and applied to an immunoaffinity column. The column is washed with water and the aflatoxins are eluted with methanol. Aflatoxins are quantitated by reversed-phase LC with post-column derivatization (PCD) involving bromination. PCD is achieved with either an electrochemical cell (Kobra cell) and addition of bromide to the mobile phase or pyridinium hydrobromide perbromide. Determination is by fluorescence. Peanut butter, pistachio paste, dried fig paste, and paprika powder samples, both naturally contaminated with aflatoxins and containing added aflatoxins, were sent to 16 collaborators in 16 European countries. Test portions of samples were spiked at levels of 2.4 and 9.6 ng/g for total aflatoxins which included 1.0 and 4.0 ng/g aflatoxin B1, respectively. Recoveries for total aflatoxins ranged from 71 to 92% with corresponding recoveries for aflatoxin B1 of 82 to 109%. Based on results for spiked samples (blind duplicates at 2 levels) as well as naturally contaminated samples (blind duplicates at 4 levels, including blank), the relative standard deviation for repeatability ranged from 4.6 to 23.3% for total aflatoxins and from 3.1 to 20.0% for aflatoxin B1. The relative standard deviation for reproducibility ranged from 14.1 to 34.2% for total aflatoxins, and from 9.1 to 32.2% for aflatoxin B1. The method showed acceptable within-laboratory and between-laboratory precision for all 4 matrixes, as evidenced by HORRAT values <1, at the low levels of determination for both total aflatoxins and aflatoxin B1.  相似文献   

6.
A collaborative study was conducted to evaluate the effectiveness of an immunoaffinity column cleanup liquid chromatographic method for determination of aflatoxin M1 in milk at proposed European regulatory limits. The test portion of liquid milk was centrifuged, filtered, and applied to an immunoaffinity column. The column was washed with water, and aflatoxin was eluted with pure acetonitrile. Aflatoxin M1 was separated by reversed-phase liquid chromatography (LC) with fluorescence detection. Frozen liquid milk samples both naturally contaminated with aflatoxin M1 and blank samples for spiking, were sent to 12 collaborators in 12 different European countries. Test portions of samples were spiked at 0.05 ng aflatoxin M1 per mL. After removal of 2 noncompliant sets of results, the mean recovery of aflatoxin M1 was 74%. Based on results for spiked samples (blind pairs at 1 level) and naturally contaminated samples (blind pairs at 3 levels) the relative standard deviation for repeatability (RSDr) ranged from 8 to 18%. The relative standard deviation for reproducibility (RSDR) ranged from 21 to 31%. The method showed acceptable within- and between-laboratory precision data for liquid milk, as evidenced by HORRAT values at the low level of aflatoxin M1 contamination.  相似文献   

7.
Determination and survey of ochratoxin A in wheat, barley, and coffee--1997   总被引:3,自引:0,他引:3  
Ochratoxin A (OA) is a nephrotoxic and nephrocarcinogenic mycotoxin produced by Aspergillus and Penicillium species. It has been found mainly in cereal grains and coffee beans. The purpose of this study was to investigate the occurrence of OA in cereal grains and in coffee imported to the United States. A modified liquid chromatographic (LC) method for determining OA in green coffee was applied to wheat, barley, green coffee, and roasted coffee. The test sample was extracted with methanol-1% NaHCO3 (7 + 3), and the extract was filtered. The filtrate was diluted with phosphate-buffered saline (PBS), filtered, and passed through an immunoaffinity column. After the column was washed with PBS and then with water, OA was eluted with methanol. The eluate was evaporated to dryness, and the residue was dissolved in acetonitrile-water (1 + 1). OA was separated on a reversed-phase C18 LC column with acetonitrile-water-acetic acid (55 + 45 + 1) as eluant and quantitated with a fluorescence detector. Recoveries of OA from the 4 commodities spiked over the range 1-4 ng/g were 71-96%. The limit of detection was about 0.03 ng/g. OA contamination at > 0.03 ng/g was found in 56 of 383 wheat samples, 11 of 103 barley samples, 9 of 19 green coffee samples, and 9 of 13 roasted coffee samples. None of the coffee samples contained OA at > 5 ng/g; only 4 samples of wheat and 1 sample of barley were contaminated above this level.  相似文献   

8.
An interlaboratory study was performed on behalf of the UK Food Standards Agency to evaluate the effectiveness of an immunoaffinity column cleanup liquid chromatographic (LC) method for the determination of deoxynivalenol in a variety of cereals and cereal products at proposed European regulatory limits. The test portion was extracted with water. The sample extract was filtered a applied to an immunoaffinity column. After being washed with water, the deoxynivalenol was eluted with acetonitrile or methanol. Deoxynivalenol was quantitated by reversed-phase LC with UV determination. Samples of artificially contaminated wheat-flour, rice flour, oat flour, polenta, and wheat based breakfast cereal, naturally contaminated wheat flour, and blank (very low level) samples of each matrix were sent to 13 collaborators in 7 European countries. Participants were asked to spike test portions of all samples at a range of deoxynivalenol concentrations equivalent to 200-2000 ng/g deoxynivalenol. Average recoveries ranged from 78 to 87%. Based on results for 6 artificially contaminated samples (blind duplicates), the relative standard deviation for repeatability (RSDr) ranged from 3.1 to 14.1%, and the relative standard deviation for reproducibility (RSDR) ranged from 11.5 to 26.3%. The method showed acceptable within-laboratory and between-laboratory precision for all 5 matrixes, as evidenced by HorRat values < 1.3.  相似文献   

9.
A collaborative study was conducted to evaluate the effectiveness of an immunoaffinity column cleanup liquid chromatography (LC) method for determination of aflatoxin B, in a milk powder based infant formula at a possible future European regulatory limit (0.1 ng/g). The test portion was extracted with methanol-water (8 + 2 [v + v]), filtered, diluted with water, and applied to an immunoaffinity column. The column was washed with water to remove interfering compounds, and the purified aflatoxin B1 was eluted with methanol. The separation and determination of the aflatoxin B1 was performed by reversed-phase LC and detected by fluorescence after postcolumn derivatization (PCD) involving bromination. PCD was achieved with either pyridinum hydrobromide perbromide (PBPB) or an electrochemical (Kobra) cell by addition of bromide to the mobile phase. The baby food (infant formula) test samples, both spiked and naturally contaminated with aflatoxin B1, were sent to 14 laboratories in 13 different European countries. Test portions were spiked at levels of 0.1 and 0.2 ng/g for aflatoxin B1. Recoveries ranged from 101 to 92%. Based on results for spiked test samples (blind pairs at 2 levels) and naturally contaminated test samples (blind pairs at 3 levels), the relative standard deviation for repeatability (RSDr) ranged from 3.5 to 14%. The relative standard deviation for reproducibility (RSDR) ranged from 9 to 23%. Nine participants used PBPB derivatization, and  相似文献   

10.
An interlaboratory study was performed on behalf of the UK Food Standards Agency to evaluate the effectiveness of an affinity column cleanup liquid chromatography (LC) method for the determination of zearalenone (ZON) in a variety of cereals and cereal products at proposed European regulatory limits. The test portion is extracted with acetonitrile:water. The sample extract is filtered, diluted, and applied to an affinity column. The column is washed, and ZON is eluted with acetonitrile. ZON is quantified by reversed-phase LC with fluorescence detection. Barley, wheat and maize flours, polenta, and a maize-based baby food naturally contaminated, spiked, and blank (very low level) were sent to 28 collaborators in 9 European countries and 1 collaborator in New Zealand. Participants were asked to spike test portions of all samples at a ZON concentration equivalent to 100 microg/kg. Average recoveries ranged from 91-111%. Based on results for 4 artificially contaminated samples (blind duplicates) and 1 naturally contaminated sample (blind duplicate), the relative standard deviation for repeatability (RSDr) ranged from 6.9-35.8%, and the relative standard deviation for reproducibility (RSDR) ranged from 16.4-38.2%. The method showed acceptable within- and between-laboratory precision for all 5 matrixes, as evidenced by HorRat values <1.7.  相似文献   

11.
A method first developed to quantify ochratoxin A in wine has been applied to the analysis of domestic and imported beers in Italy. The method uses commercial immunoaffinity columns for clean-up and high-performance liquid chromatography for quantification of the toxin. Beer was degassed, then diluted with a polyethylene glycol-sodium hydrogencarbonate solution and applied to an OchraTest immunoaffinity column. Ochratoxin A was eluted from the immunoaffinity column with methanol and quantified by reversed-phase HPLC with fluorometric detector. Average recoveries of ochratoxin A from blank beer spiked at levels from 0.04 to 1.0 ng/ml ranged from 93.8% to 100.4%, with relative standard deviations between 3.3% and 5.7%. The detection limit was 0.01 ng/ml based on a signal-to-noise ratio of 3:1. The analysis of 61 samples of domestic (10) and imported (51) beers showed ochratoxin A levels ranging from <0.01 to 0.135 ng/ml with an incidence of contamination of 50% and no substantial difference between strong and pale beers.  相似文献   

12.
A method using immunoaffinity column chromatography (IAC) and liquid chromatography (LC) for determination of zearalenone in cereal grains, animal feed, and feed ingredients was collaboratively studied. The test portion is extracted by shaking with acetonitrile-water (90 + 10, v/v) and sodium chloride. The extract is diluted and applied to an immunoaffinity column, the column is washed with water or phosphate-buffered saline or methanol-water (30 + 70, v/v), and zearalenone is eluted with methanol. The eluate is evaporated, the residue is dissolved in mobile phase and analyzed by reversed-phase LC with fluorescence detection. The presence of zearalenone can be confirmed using an alternate excitation wavelength or diode array detection. Twenty samples were sent to 13 collaborators (8 in Europe, 2 in the United States, one in Japan, one in Uruguay, and one in Canada). Eighteen samples of naturally contaminated corn, barley, wheat, dried distillers grains, swine feed, and dairy feed were analyzed as blind duplicates, along with blank corn and wheat samples. The analyses were done in 2 sample sets with inclusion of a spiked wheat control sample (0.1 mg/kg) in each set. Spiked samples recoveries were 89-116%, and for the 18 naturally contaminated samples, RSDr values (within-laboratory repeatability) ranged from 6.67 to 12.1%, RSDR values (among-laboratory reproducibility) ranged from 12.5 to 19.7%, and HorRat values ranged from 0.61 to 0.90.  相似文献   

13.
An interlaboratory study was conducted to evaluate the effectiveness of an immunoaffinity column cleanup liquid chromatography (LC) method for the determination of aflatoxin B1 levels in corn samples, enforced by European Union legislation. A test portion was extracted with methanol-water (80 + 20); the extract was filtered, diluted with phosphate-buffered saline solution, filtered on a microfiber glass filter, and applied to an immunoaffinity column. The column was washed with deionized water to remove interfering compounds, and the purified aflatoxin B1 was eluted with methanol. Aflatoxin B1 was separated and determined by reversed-phase LC with fluorescence detection after either pre- or postcolumn derivatization. Precolumn derivatization was achieved by generating the trifluoroacetic acid derivative, used by 8 laboratories. The postcolumn derivatization was achieved either with pyridinium hydrobromide perbromide, used by 16 laboratories, or with an electrochemical cell by the addition of bromide to the mobile phase, used by 5 laboratories. The derivatization techniques used were not significantly different when compared by the Student's t-test; the method was statistically evaluated for all the laboratories. Five corn sample materials, both spiked and naturally contaminated, were sent to 29 laboratories (22 Italian and 7 European). Test portions were spiked with aflatoxin B1 at levels of 2.00 and 5.00 ng/g. The mean values for recovery were 82% for the low level and 84% for the high contamination level. Based on results for spiked samples (blind pairs at 2 levels) as well as naturally contaminated samples (blind pairs at 3 levels), the values for relative standard deviation for repeatability (RSDr) ranged from 9.9 to 28.7%. The values for relative standard deviation for reproducibility (RSDR) ranged from 18.6 to 36.8%. The method demonstrated acceptable within- and between-laboratory precision for this matrix, as evidenced by the HorRat values.  相似文献   

14.
A collaborative study was conducted to evaluate the effectiveness of an immunoaffinity column cleanup liquid chromatography (LC) method for determination of aflatoxin B1 in cattle feed at a possible future European regulatory limit (1 ng/g). The test portion was extracted with acetone-water (85 + 15), filtered, diluted with water, and applied to an immunoaffinity column. The column was washed with water to remove interfering compounds, and the purified aflatoxin B1 was eluted with methanol. Aflatoxin B1 was separated and determined by reversed-phase liquid chromatography (RP-LC) and detected by fluorescence after post column derivatization (PCD) involving bromination. PCD was achieved with either pyridinium hydrobromide perbromide (PBPB), used by 14 laboratories, or an electrochemical cell and addition of bromide to the mobile phase, used by 7 laboratories. Both derivatization techniques were not significantly different when compared by the t-test; the method was statistically evaluated for all laboratories together (bromination and PBPB). The cattle feed samples, both spiked and naturally contaminated with aflatoxin B1, were sent to 21 laboratories in 14 different countries (United States, Japan, and Europe). Test portions were spiked at levels of 1.2 and 3.6 ng/g for aflatoxin B1. Recoveries ranged from 74 to 157%. Based on results for spiked samples (blind pairs at 2 levels) as well as naturally contaminated samples (blind pairs at 3 levels), the relative standard deviation for repeatability (RSDr) ranged from 5.9 to 8.7%. The relative standard deviation for reproducibility (RSDR) ranged from 17.5 to 19.6%. The method showed acceptable within- and between-laboratory precision for this matrix, as evidenced by HORRAT values, at the target levels of determination for aflatoxin B1. No major differences in RSD were observed, showing that the composition of the feeds was not a factor for the samples tested and that the method was applicable for all materials used.  相似文献   

15.
The accuracy, repeatability, and reproducibility characteristics of a method using multitoxin immunoaffinity column cleanup with liquid chromatography (LC) for determination of aflatoxins (AF; sum of aflatoxins B1, B2, G1, and G2) and ochratoxin A (OTA) in powdered ginseng and ginger have been established in a collaborative study involving 13 laboratories from 7 countries. Blind duplicate samples of blank, spiked (AF and OTA added) at levels ranging from 0.25 to 16.0 microg/kg for AF and 0.25 to 8.0 microg/kg for OTA were analyzed. A naturally contaminated powdered ginger sample was also included. Test samples were extracted with methanol and 0.5% aqueous sodium hydrogen carbonate solution (700 + 300, v/v). The extract was centrifuged, diluted with phosphate buffer (PB), filtered, and applied to an immunoaffinity column containing antibodies specific for AF and OTA. After washing the column with water, the toxins were eluted from the column with methanol, and quantified by high-performance LC with fluorescence detection. Average recoveries of AF from ginseng and ginger ranged from 70 to 87% (at spiking levels ranging from 2 to 16 microg/kg), and of OTA, from 86 to 113% (at spiking levels ranging from 1 to 8 microg/kg). Relative standard deviations for within-laboratory repeatability (RSDr) ranged from 2.6 to 8.3% for AF, and from 2.5 to 10.7% for OTA. Relative standard deviations for between-laboratory reproducibility (RSDR) ranged from 5.7 to 28.6% for AF, and from 5.5 to 10.7% for OTA. HorRat values were < or = 2 for the multi-analytes in the 2 matrixes.  相似文献   

16.
An extraction and clean-up method for ochratoxin A (OA) in roasted coffee has been developed and the HPLC method optimized. An interfering compound with a similar retention time as OA was adsorbed by the aminopropyl (NH2) material at < or = 5% NaHCO3. Residual OA on the column was recovered by washing with the extraction solution followed with methanol. Fractions were mixed together for further clean-up with Ochratest immunoaffinity columns (IACs). Analysis by HPLC resulted in a well resolved OA peak and reduction in matrix interferences. Recoveries ranged from 72 to 84% and the detection limit was 1 ng/g.  相似文献   

17.
The accuracy, repeatability, and reproducibility characteristics of a liquid chromatographic method for the determination of ochratoxin A (OTA) in white wine, red wine, and beer were established in a collaborative study involving 18 laboratories in 10 countries. Blind duplicates of blank, spiked, and naturally contaminated materials at levels ranging from < or =0.01 to 3.00 ng/mL were analyzed. Wine and beer samples were diluted with a solution containing polyethylene glycol and sodium hydrogen carbonate, and the diluted samples were filtered and cleaned up on an immunoaffinity column. OTA was eluted with methanol and quantified by reversed-phase liquid chromatography with fluorometric detection. Average recoveries from white wine, red wine, and beer ranged from 88.2 to 105.4% (at spiking levels ranging from 0.1 to 2.0 ng/mL), from 84.3 to 93.1% (at spiking levels ranging from 0.2 to 3.0 ng/mL), and from 87.0 to 95.0% (at spiking levels ranging from 0.2 to 1.5 ng/mL), respectively. Relative standard deviations for within-laboratory repeatability (RSDr) ranged from 6.6 to 10.8% for white wine, from 6.5 to 10.8% for red wine, and from 4.7 to 16.5% for beer. Relative standard deviations for between-laboratories reproducibility (RSDR) ranged from 13.1 to 15.9% for white wine, from 11.9 to 13.6% for red wine, and from 15.2 to 26.1% for beer. HORRAT values were < or =0.4 for the 3 matrixes.  相似文献   

18.
An interlaboratory trial for determination of zearalenone (ZON) in baby food and animal feed was conducted. The study involved 39 participants in 16 European Union member states, as well as Turkey, Uruguay, and China, representing a cross-section of industry, and official food control and research institutes. The method is based on immunoaffinity column cleanup followed by high-performance liquid chromatography using fluorimetry (HPLC-FI). The test portion of the sample is extracted with methanol-water (75 + 25, v/v). The sample extract is filtered, diluted, and passed over an immunoaffinity column. ZON is eluted with methanol. The separation and determination of ZON is performed by reversed-phase HPLC-FI with an excitation wavelength of 274 nm and an emission wavelength of 446 nm. Test portions of the samples were spiked at levels of 20 and 30 microg/kg ZON in baby food and at levels of 100 and 150 microg/kg ZON in animal feed. Mean recoveries from each participant ranged from 78 to 119% with an average value of 92% for baby food and from 51 to 122% with an average value of 74% for animal feed. Based on results for spiked samples (blind duplicates at 2 levels), as well as naturally contaminated samples (blind duplicates at 3 levels), the relative standard deviation for repeatability (RSDr) in baby food ranged from 2.8 to 9.0%. For animal feed, this value ranged from 5.7 to 9.5%. The relative standard deviation for reproducibility (RSDR) in baby food ranged from 8.2 to 13.3%, and for animal feed this value ranged from 15.5 to 21.4%. The Horwitz ratio (HorRat) in baby food ranged from 0.3 to 0.4, and for animal feed this value ranged from 0.6 to 0.9. The method showed acceptable within- and between-laboratory precision for each matrix, as required by European legislation.  相似文献   

19.
An interlaboratory study was conducted to evaluate the effectiveness of an immunoaffinity column cleanup liquid chromatography (LC) method for determination of aflatoxin B1 and total aflatoxins in hazelnut paste at European regulatory limits. The test portion was extracted with methanol-water (6 + 4). The extract was filtered, diluted with phosphate-buffered saline (PBS) solution to a specified solvent concentration, and applied to an immunoaffinity column containing antibodies specific to aflatoxins. The aflatoxins were removed from the immunoaffinity column with methanol, and then quantified by reversed-phase LC with post-column derivatization (PCD) involving bromination. The PCD was achieved with electrochemically generated bromine (Kobra Cell) followed by fluorescence detection (except for one participant who used pyridinum hydrobromide perbromide for bromination). Hazelnut paste, both naturally contaminated with aflatoxins and blank (<0.1 ng/g) for spiking by participants with aflatoxins, was sent to 14 collaborators in Belgium, The Netherlands, Spain, Turkey, the United Kingdom, and the United States. Test portions were spiked at levels of 4.0 and 10.0 ng/g for total aflatoxins by participants using supplied total aflatoxins standards. Recoveries for total aflatoxins and aflatoxin B1 averaged from 86 to 89%. Based on results for naturally contaminated samples (blind duplicates at 3 levels ranging from 4.0 to 11.8 ng/g total aflatoxins), the relative standard deviation for repeatability (RSDr) ranged from 2.3 to 3.4% for total aflatoxins and from 2.2 to 3.2% for aflatoxin B1. The relative standard deviation for reproducibility (RSD(R)) ranged from 6.1 to 7.0% for total aflatoxins and from 7.3 to 7.8% for aflatoxin B1. The method showed exceptionally good within-laboratory and between-laboratory precision for hazelnut paste, as evidenced by HORRAT values, which in all cases were significantly below target levels, the low levels of determination for both aflatoxin B1 and total aflatoxins.  相似文献   

20.
Aptamers are single‐stranded oligonucleotides with high affinity and specificity and are widely used in targets separation and enrichment. Here, an aptamer‐affinity column (AAC) was firstly prepared in‐house through a covalent immobilization strategy. Then, ochratoxin A (OTA) in ginger powder was absorbed and enriched using the new aptamer‐based clean‐up technology for the first time, and was further analyzed by ultra high performance liquid chromatography with fluorescence detection. After optimization, the average recoveries for blank samples spiked with OTA at 5, 15, and 45 μg/kg ranged from 85.36 to 96.83%. Furthermore, the AAC exhibited a similar accuracy as an immunoaffinity column to clean up OTA in ginger powder. Above all, it exhibited better reusability, twice that of the immunoaffinity column, had lower toxicity and cost, and took less time. Of 25 contaminated ginger powder samples, OTA contamination levels ranged from 1.51 to 4.31 μg/kg, which were lower than the European Union (EU) regulatory limits. All the positive samples were further confirmed by ultra‐fast LC with MS/MS. In conclusion, the method of clean‐up based on the AAC coupled to ultra‐HPLC with fluorescence detection was rapid, specific, and sensitive for the quantitative analysis of OTA in a complex matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号