首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enzymatic method for the synthesis of a water-soluble, conducting poly(o-toluidine) (POT) in the presence of sulfonated polystyrene (SPS) is presented. The enzyme horseradish peroxidase was used to polymerize o-toluidine to form a water-soluble, conducting POT/SPS complex, which exhibits moderate electrical conductivity. The synthesis is simple and the conditions are mild. The polymerization may be carried out at room temperature in pH 4.3 buffered aqueous solution with stoichiometric amount of monomer, SPS, hydrogen peroxide and catalytic amount of enzyme. The UV-Vis absorption spectra of the products display a distinct absorption peak at 740 nm at pH 4.3 that indicates the formation of the conducting, emeraldine salt form of POT. The structure and electrochemical behavior of the polymer was investigated with FT-IR and cyclic voltammetry method.  相似文献   

2.
Polyaniline and poly(o-toluidine) doped with p-toluene sulphonic acid (p-TSA) were synthesized by in situ chemical polymerization method using ammonium per sulphate as an oxidizing agent. This is a novel polymerization process for the direct synthesis of emeraldine salt phase of the polymer. The polymers were characterized by using UV-Vis and FT-IR spectroscopy, SEM, elemental analyzer, TGA/DSC and conductivity measurements. Thermal analysis shows that poly(o-toluidine) is less thermally stable compared to polyaniline. The less conductivity in poly(o-toluidine) is due to the cumulative steric as well as electronic effect of the bulky methyl substituent present on the benzene ring. High temperature conductivity measurements show ‘thermal activated behavior’.  相似文献   

3.
Poly(ethylene terephthalate) (PET)/silica nanocomposites were synthesized by using the in situ polymerization approach. Sol-gel transformation based on the hydrolysis and condensation of tetraethoxysilane (TEOS) is used to prepare the inorganic phase, concurrent with condensation polymerization of terephthalic acid and ethylene glycol to produce the PET matrix. Due to the simultaneous formation of the polymer matrix and the inorganic networks, a macrophase separation is avoided, and the resulting materials have a high degree of homogeneity. The morphology and the crystallization behavior of the composites were examined by scanning electron microcopy (SEM) and differential scanning calorimetry (DSC), respectively.  相似文献   

4.
Zinc oxide nanoparticles, with an average size of about 40 nm, were encapsulated by polystyrene using in situ emulsion polymerization in the presence of 3-methacryloxypropyltrimethoxysilane (MPTMS) as a coupling agent and polyoxyethylene nonylphenyl ether (OP-10) as a surfactant. Polymerization mechanism of nanocomposite latex was discussed. Transmission electron microscopy (TEM) proved the presence of ZnO nanoparticle appeared to be monodisperse in nanosize in polymer composite particles. ZnO/PS nanocomposites were characterized by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results of FT-IR and XPS revealed that the surface of ZnO particle was successfully grafted by PS through the link of the coupling agent between ZnO and polymer. TGA and DSC results indicated an enhancement of thermal stability of composite materials compared with the pure polymer. SEM (scanning electron microscope) images showed a perfect dispersion of the ZnO particles in latex film. In addition, UV-visible absorption measurements demonstrated that the ZnO/PS composite coatings display a perfect performance of absorbing UV light.  相似文献   

5.
A series of poly(o-methoxyaniline) (PMA)/Na+-montmorillonite (MMT) clay nanocomposite (Na+-PCN) materials have been successfully prepared by in situ emulsion polymerization in the presence of inorganic nanolayers of hydrophilic Na+-MMT clay with DBSA and APS as surfactant and initiator, respectively. The as-synthesized Na+-PCN materials were characterized by Fourier-transformation infrared (FTIR) spectroscopy, wide-angle powder X-ray diffraction (XRD) and transmission electron microscopy (TEM).Na+-PCN materials in the form of coatings with low loading of Na+-MMT clay (e.g., 5 wt.%, CLMA5) on cold rolled steel (CRS) were found much superior in corrosion protection over those of neat PMA based on a series of electrochemical measurements of corrosion potential, polarization resistance, corrosion current and impedance spectroscopy in 5 wt.% aqueous NaCl electrolyte. The molecular weight of PMA extracted from Na+-PCN materials and net PMA were determined by gel permeation chromatography (GPC) with NMP as eluant. Effects of material composition on the optical properties, electrical conductivity, thermal stability and surface morphology of neat PMA and/or a series of Na+-PCN materials, in the form of solution, powder-pressed pellet and fine powder, were also studied by ultraviolet-visible spectra, four-point probe technique, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively.  相似文献   

6.
Differential scanning calorimetry (DSC) was used to investigate entrapped water in poly(o-methoxyaniline) (POMA) in powder form. Two endothermic peaks were attributed to removal of water molecules that were adsorbed with distinct energies. By obtaining thermograms at various heating rates, we succeeded in applying Kissinger's approaches to estimate activation energies for the water adsorbed. The values obtained were ca. 25 and 53 kJ/mol, which correspond to H-bonding interactions, probably at the amine and imine centers of POMA, respectively.  相似文献   

7.
The in situ radical transfer addition polymerization of styrene from silica nanoparticles was carried out by the free radical polymerized of styrene in the presence of mercaptopropyl-modified silica nanoparticles as chain-transfer agent. The effects of the amount of the initiator, polymerizing temperature and polymerizing time on the convention of styrene (C) and the percentage of grafting were investigated. Results of elemental analysis, IR, X-ray photoelectron spectrometer and transmission electron microscope demonstrated that the desired polymer chains have been covalently bonded to the surface of the silica nanoparticles. A C of 42.56% and a PG of 38.10% could be achieved with the optimal condition. The polystyrene grafted silica nanoparticles could be separated and used as nanofiller for polymers.  相似文献   

8.
A composite film consisting of poly(o-phenylenediamine) (PoPD) and poly(vinyl alcohol) (PVA) has been prepared, and the effect of the protonation level of PoPD on the response of the composite to humidity been investigated by ac impedance measurements. The electrochemical system of the PoPD/PVA composite in a humid atmosphere is represented by an electrochemical equivalent circuit containing film (Rfilm, Cfilm), Warburg (W) and interfacial (Rct, Cdl) impedance. Rfilm was increased with decreasing protonation level of the PoPD in relative humidity regions higher than 40%, but it was almost independent of the protonation level in humidity regions lower than this percentage.  相似文献   

9.
Bis[o-(hydrosilyl)phenyl]cuprates and bis[o-(fluorosilyl)phenyl]cuprates were prepared by reacting [o-(hydrosilyl)phenyl]lithiums and [o-(fluorosilyl)phenyl]lithiums, respectively, with copper salts, such as CuCN and Cu(OPiv)2. The phenylcuprates underwent oxidative coupling to afford 2,2′-bis(hydrosilyl)biphenyls and 2,2′-bis(fluorosilyl)biphenyls.  相似文献   

10.
Monodisperse and isolated microspheres of poly(N-methylaniline) were successfully prepared through chemical polymerization of N-methylaniline by in adipic acid containing poly(vinylpyrrolidone) (PVP). Mean diameters of the microspheres with smooth surfaces changed from 320 to 100 nm by increasing the reaction temperature from 25 to 75 °C. The concentration of PVP did not affect much the size of microspheres, but the increased PVP concentration led to longer induction times for the onset of dispersion polymerization.  相似文献   

11.
An organic-inorganic hybrid poly-o-toluidine Th(IV) phosphate was chemically synthesized by mixing ortho-tolidine into the gel of Th(IV) phosphate in different mixing volume ratios, concentration of inorganic reactant with a fixed mixing volume ratios of organic polymer. The physico-chemical characterization was carried out by elemental analysis, TEM, SEM, XRD, FTIR and simultaneous TGA-DTA studies. The ion-exchange capacity, chemical stability, effect of eluant concentration, elution behavior and pH titration studies were also carried out to understand the ion-exchange capabilities. The distribution studies revealed that the cation-exchange material is highly selective for Hg2+, which is an important environmental pollutant. Due to selective nature of the cation-exchanger ion-selective membrane electrode was fabricated for the determination of Hg(II) ions in solutions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations.  相似文献   

12.
Poly(ferrocenyldimethylsilane) and poly(ferrocenylmethylphenylsilane) have been prepared via the thermal ring-opening polymerization of the corresponding strained, silicon-bridged ferrocenophanes. It was found that the molecular weights of resultant polymers depend on the polymerization time. Their electrochemical behavior in aqueous electrolytes was investigated by cyclic voltammetry.  相似文献   

13.
The complexation between poly(N,N-diethylacrylamide) (PDEA) and poly(acrylic acid) (PAA) in aqueous solution was studied by viscometric, potentiometric, and fluorescence techniques. It was found that an interpolymer complex formed between the two polymers through hydrogen bonding interactions with the stoichiometry of r=0.6 (r is unit molar ratio of PAA/PDEA), and the complex formation show the dependence on pH values. The phase behaviour studies showed that the lower critical solution temperature of the PDEA-PAA aqueous solution gradually increased with the increasing of r from 0.01 to 0.15, until a soluble system in the whole temperature region was obtained, which remained in the range of r=0.15-0.3. At higher PAA concentrations, when r is above 0.3, the system appeared phase separation, and almost no temperature dependence was observed. Based on these conclusion and structure characteristics of PDEA and PAA, a model containing only short sequences of monomer residues was proposed for the structure of PDEA-PAA complex.  相似文献   

14.
Composite polymer electrolytes based on poly(ethylene oxide)-polysiloxane/l-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide/organomontmorillonite(PEO-PDMS/1L/OMMT) were prepared and characterized.Addition of both an ionic liquid and OMMT to the polymer base of PEO-PDMS resulted in an increase in ionic conductivity.At room temperature,the ionic conductivity of sample PPB100-OMMT4 was 2.19×10~3 S/cm.The composite polymer electrolyte also exhibited high thermal and electrochemical stability and may potentially be applied in lithium batteries.  相似文献   

15.
The miscibility and morphology of poly(ε-caprolactone) (PCl) and poly(para-chlorostyrene) (PpClS) blend were investigated by using thermal analysis, morphological analysis, viscometry, and the study of melting point depression. A single glass transition temperature was observed by differential scanning calorimetry (DSC) for PCl/PpClS blends in the whole compositional range (0/100, 25/75, 50/50, 62.5/37.5, 75/25, 90/10). Morphology of the polymers and their blends was studied by scanning electron microscopy (SEM). The Fourier transform infrared spectra of the samples were obtained by spectrometer. Up to 12 cm−1 shifts in carbonyl stretching band of PCl was detected in the spectra of PpClS rich blends. The viscosity of PCl, PpClS and their blends has also been studied to investigate the miscibility according the miscibility criteria Δb, and Δ[η]. Using this data, the interaction parameters α and μ, based on the Chee and Sun et al. approaches were determined. These criteria indicated that the blend is miscible in all proportions up to 90% of PCl content in the blends. The melting point depression of PCl in the blends was examined to obtain the interaction parameter, χ12 for this system. The parameter, χ12 was found to be composition dependent. Negative values of the obtained interaction parameter also support the miscibility of this system up to the 90% PCl in the blend.  相似文献   

16.
The tri-component copolymer poly(lactide-co-glycolide-co-caprolactone) (PLGC) was synthesized to prepare nanoparticles by the modified spontaneous emulsification solvent diffusion method (modified-SESD method); and the method was also modified by using the Tween60 instead of poly(vinyl alcohol) (PVA) as dispersing agent. The obtained nanoparticles have spherical shape and good particle distribution with mean size in the range from 100 to 200 nm. The in vitro degradation behaviour of PLGC nanoparticles was investigated. It was found that PLGC nanoparticles could remain stable during the degradation with no agglomeration. Compared with PLA and PLGA nanoparticles, the degradation rate of PLGC nanoparticles is faster. After 9 weeks of hydrolysis, the Mn of PLGC is less by 10% of the original Mn. The mean radius of the nanoparticles increases from 68 nm to 80 nm continuously during the first stage, and after 4 weeks of degradation, the particles' size decreases gradually from 80 nm to about 40 nm. These results suggest that the PLGC nanoparticles may show degradation-controlled drug release behaviour and seem to be a promising drug delivery system.  相似文献   

17.
The chemical co-polymerization of aniline with o-anthranilic acid (AA) to form copolymer films has been made in aqueous hydrochloric acid medium. The copolymer films were monitored by using the quartz crystal microbalance (QCM) technique. The effect of AA and its concentrations on the film formation was investigated. The results were justified by measuring the UV-Vis absorption spectra for the in situ copolymer films grown onto glass slides immersed into the polymerization media and the in situ UV-Vis absorption spectra for the copolymer in the bulk during the co-polymerization. The conductivity for the copolymer films and powder pellets at different molar ratios of aniline/AA were measured. Also, the IR spectra, X-ray diffraction and the thermal gravimetric analysis for the copolymer powder formed in the bulk in the absence and presence of AA were measured and discussed. It is found that the presence of AA affects the yield, induction period, depletion time and growth rate of the film formation. It also affects the crystallinity, and conductivity as well as the solubility of the polymer. Finally, the dopant weight fraction (w) associated with the copolymer was determined. It is almost half the value determined for the polymer in absence of AA.  相似文献   

18.
The composite films of poly(lactic acid) (PLA) doped with glucosamine(Gluc)-formaldehyde(FA) polymer/sodium dodecylbenzenesulfonate (SDBS) complexes at 1–5 wt% were synthesized to demonstrate striking improvement of their structural and mechanical properties. The polymer complexes were obtained by the hydrothermal polymerization of Gluc and FA at a molar ratio of 1:2 in the presence of SDBS. The atomic ratios of S in to N in (=S/N) in the polymer complexes limitedly range from 0.52 to 0.69, indicating that the complexation develops through the nonstoichiometric reaction between groups of (Gluc-FA) polymer and ones of SDBS and 31–48% of the groups remain unbound. The PLA composite film doped with 1 wt% (Gluc-FA)/SDBS showed the elongation-at-break of as large as 194% compared with 37% for PLA film, together with an appreciable increase of the crystallites size (D 200) of PLA from 21.8 to 33.3 nm.  相似文献   

19.
Cheng-Kun Lin 《Tetrahedron》2010,66(51):9688-9693
A simple method for the oxidation of primary alcohols to aldehydes using o-iodoxybenzoic acid (IBX) with the addition of stoichiometric acetic acid has been developed. Addition of acetic acid significantly accelerated the reaction rate. Under these conditions, primary aliphatic, benzylic, and allylic alcohols are smoothly converted to aldehydes in high yields (90-97%).  相似文献   

20.
The conductivity aging and thermal stability of poly(N-methylaniline) are reported. Poly(N-methylaniline) doped with chloride ion was electrochemically synthesized. The conductivity data obtained in the temperature range between 118 and 483 K are analysed by Arrhenius and Mott models to elucidate the conduction mechanism. The thermal degradation of both doped and dedoped samples of poly(N-methylaniline) in air and nitrogen atmosphere has been followed using thermogravimetric and differential thermal analysis techniques. The polymer is heat-aged at various temperatures and the aged samples are analysed by FT-IR, SEM and XRD. The thermogravimetric data are further analysed by three different methods: Horowitz and Metzger [Anal. Chem. 35 (1963) 1464], Coats and Redfern [Nature 201 (1964) 68], Chan et al. [Synth. Met. 31 (1989) 95] to evaluate the energy of activation. The applicability of the three methods for the evaluation of kinetic parameters is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号