首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
刘海清 《高分子科学》2010,28(5):781-788
<正>The stability ofpoly(vinyl alcohol)(PVA) nanofibrous mats in water media was improved by post-electrospinning treatments.Bifunctional glutaraldehyde(GA) in methanol was used as a crosslinking agent to stabilize PVA nanofiber,but fiber twinning was observed frequently,and the highly porous structure of PVA nanofibrous mats was destroyed when the crosslinked fiber was soaked in water.To overcome this shortcoming,chitosan(CS) was introduced into the PVA spinning solution to prepare PVA/CS composite nanofibers.Their treatment in GA/methanol solution could retain the fiber morphology of PVA/CS nanofibers and porous structure of PVA/CS nanofibrous mats even if they were soaked in aqueous solutions for 1 month.Scanning electron microscopy(SEM),X-ray diffraction(XRD),thermal gravimetric analysis(TGA) and differential scanning calorimetry(DSC) were applied to characterize the physicochemical structure and thermal properties of PVA nanofibers.It was found that the water resistance of PVA nanofibrous mats was enhanced because of the improvement of the degree of crosslinking and crystallinity in the electrospun PVA fibers after soaking in GA/methanol solution.  相似文献   

2.
A biocomposite of hydroxyapatite (HAp) with electrospun nanofibrous scaffolds was prepared by using chitosan/polyvinyl alcohol (CS/PVA) and N-carboxyethyl chitosan/PVA (CECS/PVA) electrospun membranes as organic matrix, and HAp was formed in supersaturated CaCl2 and KH2PO4 solution. The influences of carboxylic acid groups in CECS/PVA fibrous scaffold and polyanionic additive poly(acrylic acid) (PAA) in the incubation solution on the crystal distribution of the HAp were investigated. Field-emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared (FTIR) were used to characterize the morphology and structure of the deposited mineral phase on the scaffolds. It was found that addition of PAA to the mineral solution and use of matrix with carboxylic acid groups promoted mineral growth and distribution of HAp. MTT testing and SEM imaging from mouse fibroblast (L929) cell culture revealed the attachment and growth of mouse fibroblast on the surface of biocomposite scaffold, and that the cell morphology and viability were satisfactory for the composite to be used in bioapplications.  相似文献   

3.
郭睿  史向阳 《高分子科学》2016,34(9):1047-1059
In this study, multiwalled carbon nanotubes (MWCNTs) were used to encapsulate a model anticancer drug, doxorubicin (Dox). Then, the drug-loaded MWCNTs (Dox/MWCNTs) with an optimized drug encapsulation percentage were mixed with poly(lactide-co-glycolide) (PLGA) polymer solution for subsequent electrospinning to form drug-loaded composite nanofibrous mats. The structure, morphology, and mechanical properties of the formed electrospun Dox/PLGA, MWCNTs/PLGA, and Dox/MWCNTs/PLGA composite nanofibrous mats were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and tensile testing. In vitro viability assay and SEM morphology observation of mouse fibroblast cells cultured onto the MWCNTs/PLGA fibrous scaffolds demonstrate that the developed MWCNTs/PLGA composite nanofibers are cytocompatible. The incorporation of Dox-loaded MWCNTs within the PLGA nanofibers is able to improve the mechanical durability and maintain the three-dimensional structure of the nanofibrous mats. More importantly, our results indicate that this double-container drug delivery system (both PLGA polymer and MWCNTs are drug carriers) is beneficial to avoid the burst release of the drug and able to release the antitumor drug Dox in a sustained manner for 42 days. The developed composite electrospun nanofibrous drug delivery system may be used as therapeutic scaffold materials for post-operative local chemotherapy.  相似文献   

4.
Hydrophobic biodegradable polyesters, poly(L-lactide) (PLLA) and poly(lactide-co-glycolide) (PLGA), were electrospun on different types of collectors to induce morphological changes in the nanofibrous membrane. On the metal collector smooth nonwoven membranes were obtained for both PLLA and PLGA, while on the water reservoir the surface of the membranes became rough due to shrinkage and slow charge dissipation. When NaCl was added to water to enhance the conductivity, the roughness of the membrane surface was changed, yet the shrinkage remained relatively unchanged. The crystallization of PLLA electospun material on the metal plate was suppressed because of the rapid solvent evaporation, however, upon annealing above the glass transition temperature for 24 hr the PLLA membrane became crystallized. When electrospun on the water reservoir, the PLLA membrane remained amorphous. Crystalline PLLA was obtained by electrospinning on the methanol reservoir due to the swelling of nanofibers by methanol.  相似文献   

5.
Nanofibers based on natural polymers have recently been attracting research interest as promising materials for use as skin substitutes. Here, we prepared photocrosslinked nanofibrous scaffolds based on methacrylated chitosan (MACS) by photocrosslinking electrospun methacrylated chitosan/poly (vinyl alcohol) (PVA) mats and subsequently removing PVA from the nanofibers. We comprehensively investigated the solution properties of MACS/PVA precursors, the intermolecular action between MACS and PVA components, and the morphology of MACS/PVA nanofibers. Results indicated that the fiber diameter and morphology of the photocrosslinked methacrylated chitosan-based nanofibrous scaffolds were controlled by the MACS/PVA mass ratio and showed highly micro-porous structures with many fibrils. In vitro cytotoxicity evaluation and cell culture experiments confirmed that MACS-based mats with micro-pore structure were biocompatible with L929 cells and facilitated cellular migration into the 3D matrix, demonstrating their potential application as skin replacements for wound repair.  相似文献   

6.
利用静电纺丝技术在无纺布上制备PET纳米纤维膜, 并用交联壳聚糖对其进行改性得到壳聚糖改性纳米纤维复合膜. 以间苯二胺(MPD)和均苯三甲酰氯(TMC)为单体, 采用界面聚合法在壳聚糖改性纳米纤维复合膜的表面制备聚酰胺分离层, 得到新型静电纺丝纳米纤维基复合反渗透膜. 新型复合反渗透膜具有典型的聚酰胺复合反渗透膜的表面脊-谷结构. 从膜的表面形貌、 亲水性、 分离性能等3个方面对水相MPD溶液中阴离子表面活性剂十二烷基苯磺酸钠(SDBS)的含量对膜结构和性能的影响进行了系统研究. 结果表明, SDBS的含量对膜形态结构的均匀性和亲水性有一定影响, 且随着SDBS含量的增加, 膜的脱盐率先增大后减小, 而通量小幅度上升后, 先减小后增大, 呈现规律性变化.  相似文献   

7.
The main attitude of new wound dressings with biocompatible natural or synthetic polymers is improving and accelerating the healing process. In this study, halloysite nanotubes (HNTs) loaded with a model antibiotic drug, amoxicillin (AMX), were incorporated within poly(lactic‐co‐glycolic acid) (PLGA) solution that were electrospun with hydrophilic chitosan nanofibers simultaneously in two different syringes to make composite nanofibrous mat. The morphology, homogeneity, and fiber diameter of electrospun (PLGA/HNTs/AMX/chitosan) composite nanofibers were investigated by scanning electron microscopy and image J software. To evaluate the chemical structure, mechanical property, contact angle, and water absorption of samples, Fourier transform infrared spectroscopy, tensile testing, water contact angle, and immersion in phosphate buffer saline were utilized, respectively. Results indicated that incorporation of HNTs does not significantly alter nanofibers' morphology but rather increases their diameter, while the mechanical properties are improved because of its high modulus. Also, addition of natural hydrophilic polymer nanofibers (chitosan) enhanced the hydrophilicity property of samples. According to high‐performance liquid chromatography drug release analysis, HNTs as a good nanocarrier decreased initial burst release and showed controlled release behavior. MTT assay determined biocompatibility of PLGA/HNTs/AMX/chitosan. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
We report the fabrication of multiwalled carbon nanotube (MWCNT)-incorporated electrospun polyvinyl alcohol (PVA)/chitosan (CS) nanofibers with improved cellular response for potential tissue engineering applications. In this study, smooth and uniform PVA/CS and PVA/CS/MWCNTs nanofibers with water stability were formed by electrospinning, followed by crosslinking with glutaraldehyde vapor. The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and mechanical testing, respectively. We showed that the incorporation of MWCNTs did not appreciably affect the morphology of the PVA/CS nanofibers; importantly the protein adsorption ability of the nanofibers was significantly improved. In vitro cell culture of mouse fibroblasts (L929) seeded onto the electrospun scaffolds showed that the incorporation of MWCNTs into the PVA/CS nanofibers significantly promoted cell proliferation. Results from this study hence suggest that MWCNT-incorporated PVA/CS nanofibrous scaffolds with small diameters (around 160 nm) and high porosity can mimic the natural extracellular matrix well, and potentially provide many possibilities for applications in the fields of tissue engineering and regenerative medicine.  相似文献   

9.
Immobilization of cellulase in nanofibrous PVA membranes by electrospinning   总被引:6,自引:0,他引:6  
Electrospinning is a nanofiber-forming process by which either polymer solution or melt is charged to high voltages. With high specific surface area and porous structure, electrospun fibrous membranes are excellent candidates for immobilization of enzymes. In this paper, immobilization of cellulase in nanofibrous poly(vinyl alcohol) (PVA) membranes was studied by electrospinning. PVA and cellulase were dissolved together in an acetic acid buffer (pH 4.6) and electrospun into nanofibers with diameter of around 200 nm. The nanofibrous membranes were crosslinked by glutaraldehyde vapor and examined catalytic efficiency for biotransformations. The activity of immobilized cellulase in PVA nanofibers was over 65% of that of the free enzyme. Nanofibers were superior to casting films from the same solution for immobilization of cellulase. The activity of immobilized cellulase descended with ascending in enzyme loading efficiency and crosslinking time, which retained 36% its initial activity after six cycles of reuse.  相似文献   

10.
电纺聚乙烯醇超细纤维膜的性能研究   总被引:3,自引:0,他引:3  
由电纺制备聚乙烯醇(PVA)超细纤维膜,以扫描电镜观察纤维的微观形貌,用X射线衍射研究超细纤维膜的结晶行为,并测定了PVA超细纤维膜的力学性能和吸水性.结果表明,PVA超细纤维的平均直径为(184±26)nm,超细纤维中PVA的结晶度和晶体有序程度较浇铸膜低.超细纤维膜的拉伸强度、模量和断裂伸长率均较浇铸膜差,吸水率在300%以上,高于浇铸膜.  相似文献   

11.
Nanofibrous membrane with a fiber diameter of 80-150 nm was fabricated from mixed chitosan/poly(vinyl alcohol) (PVA) solution by an electrospinning process. Field emission scanning electron microscope and transmission electron microscope were used to characterize the morphology of the nanofibrous membrane. It was found that chitosan nanofibrous membrane with stabilized morphology could be prepared through removing most of PVA from the nascent one with 0.5 M NaOH aqueous solution. This treatment also resulted in an obvious decrease in fiber diameter. The stabilized chitosan nanofibrous membrane was explored as support for enzyme immobilization due to the characteristics of excellent biocompatibility, high surface/volume ratio, and large porosity. Lipase from Candida rugosa was immobilized on the nanofibrous membrane using glutaraldehyde (GA) as coupling reagent. The properties of the immobilized lipase were assayed and compared with the free one. Results showed that, the observed lipase loading on this nanofibrous membrane was up to 63.6 mg/g and the activity retention of the immobilized lipase was 49.8% under the optimum condition. The pH and thermal stabilities of lipase were improved after it was immobilized on the chitosan nanofibrous membrane. In addition, the experimental results of reusability and storage stability indicated that the residual activities of the immobilized lipase were 46% after 10 cycles and 56.2% after 30 days, which were obviously higher than that of the free one.  相似文献   

12.
The purpose of this study is to investigate the effect of composition poly(D,L-lactide-co-glycolide)/poly(ε-caprolactone)(PLGA/PCL)blending on the morphology,shrinkage and degradation behaviors of the electrospun fibers.With the increase of PLGA content in the composite fibers,the average diameter of the electrospun fibers increased from 1.35 μm to 1.95μm.The serious shrinking of the electrospun PLGA meshes could be circumvented by adding 20% PCL in the fibers,resulting from the semi-crystalline nature of PCL.The degradation rate of the electrospun meshes could be modulated by PLGA/PCL composition.In addition,the electrospun meshes containing 20% PCL displayed stable dimensional morphology with degradation.  相似文献   

13.
The purpose of this study is to investigate the effect of composition poly(D,L-lactide-co-glycolide)/poly(ε- caprolactone)(PLGA/PCL)blending on the morphology,shrinkage and degradation behaviors of the electrospun fibers. With the increase of PLGA content in the composite fibers,the average diameter of the electrospun fibers increased from 1.35μm to 1.95μm.The serious shrinking of the electrospun PLGA meshes could be circumvented by adding 20% PCL in the fibers,resulting from the semi-crystalline nature ...  相似文献   

14.
Despite promising filtration abilities, low mechanical properties of extraordinary porous electrospun nanofibrous membranes could be a major challenge in their industrial development. In addition, such kind of membranes are usually hydrophobic and non-wettable. To reinforce an electrospun nanofibrous membrane made of polyethersulfone (PES) mechanically and chemically (to improve wettability), zirconia nanoparticles as a novel nanofiller in membrane technology were added to the nanofibers. The compressive and tensile results obtained through nanoindentation and tensile tests, respectively, implied an optimum mechanical properties after incorporation of zirconia nanoparticles. Especially compaction resistance of the electrospun nanofibrous membranes improved significantly as long as no agglomeration of the nanoparticles occurred and the electrospun nanocomposite membranes showed a higher tensile properties without any brittleness i.e. a high ductility. Noteworthy, for the first time the compaction level was quantified through a nanoindentation test. In addition to obtaining a desired mechanical performance, the hydrophobicity declined. Combination of promising properties of optimum mechanical and surface chemical properties led to a considerably high water permeability also retention efficiency of the nanocomposite PES nanofibrous membranes. Such finding implies a longer life span and lower energy consumption for a water filtration process.  相似文献   

15.
In this study a series of chemically crosslinked chitosan/poly(ethylene glycol) (CS/PEG) composite membranes were prepared with PEG as a crosslinking reagent other than an additional blend. First, carboxyl-eapped poly(ethylene glycol) (HOOC-PEG-COOH) was synthesized. Dense CS/PEG composite membranes were then prepared by casting/evaporation of CS and HOOC-PEG-COOH mixture in acetic acid solution. Chitosan was chemically crosslinked due to the amidation between the carboxyl in HOOC-PEG-COOH and the amino in chitosan under heating, as confirmed by FTIR analysis. The hydrophilicity, water-resistance and mechanical properties of pure and crosslinked chitosan membranes were characterized, respectively. The results of water contact angle and water absorption showed that the hydrophilicity of chitosan membranes could be significantly improved, while no significant difference of weight loss between pure chitosan membranes and crosslinked ones was detected, indicating that composite membranes with amidation crosslinking possess excellent water resistanance ability. Moreover, the tensile strength of chitosan membranes could be significantly enhanced with the addition of certain amount of HOOC-PEG-COOH crosslinker, while the elongation at break didn't degrade at the same time. Additionally, the results of swelling behaviors in water at different pH suggested that the composite membranes were pH sensitive.  相似文献   

16.
大豆分离蛋白/聚乙烯醇的电纺研究   总被引:1,自引:0,他引:1  
对大豆分离蛋白(SPI)/聚乙烯醇(PVA)的电纺进行了研究, 讨论了溶液性质和甘油的加入对SPI/PVA电纺纤维形貌的影响, 并对SPI/PVA电纺膜进行了成分分析和力学性能表征. 结果表明, 加入甘油可以提高SPI/PVA的可电纺性, 同时使SPI/PVA电纺膜的拉伸强度从不含甘油的(5.17±0.62) MPa下降到含有甘油的(1.67±0.21) MPa, 而伸长率呈增加趋势.  相似文献   

17.
The objective of this study is to design a novel kind of scaffolds for blood vessel and nerve repairs. Random and aligned nanofibrous scaffolds based on collagen-chitosan-thermoplastic polyurethane (TPU) blends were electrospun to mimic the componential and structural aspects of the native extracellular matrix, while an optimal proportion was found to keep the balance between biocompatibility and mechanical strength. The scaffolds were crosslinked by glutaraldehyde (GTA) vapor to prevent them from being dissolved in the culture medium. Fiber morphology was characterized using scanning electron microscopy (SEM) and atomic-force microscopy (AFM). Fourier transform infrared spectroscopy (FTIR) showed that the three-material system exhibits no significant differences before and after crosslinking, whereas pore size of crosslinked scaffolds decreased drastically. The mechanical properties of the scaffolds were found to be flexible with a high tensile strength. Cell viability studies with endothelial cells and Schwann cells demonstrated that the blended nanofibrous scaffolds formed by electrospinning process had good biocompatibility and aligned fibers could regulate cell morphology by inducing cell orientation. Vascular grafts and nerve conduits were electrospun or sutured based on the nanofibrous scaffolds and the results indicated that collagen-chitosan-TPU blended nanofibrous scaffolds might be a potential candidate for vascular repair and nerve regeneration.  相似文献   

18.
Collagen functionalized thermoplastic polyurethane nanofibers (TPU/collagen) were successfully produced by coaxial electrospinning technique with a goal to develop biomedical scaffold. A series of tests were conducted to characterize the compound nanofiber and its membrane in this study. Surface morphology and interior structure of the ultrafine fibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM), whereas the fiber diameter distribution was also measured. The crosslinked membranes were also characterized by SEM. Porosities of different kinds of electrospun mats were determined. The surface chemistry and chemical composition of collagen/TPU coaxial nanofibrous membranes were verified by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometry (FTIR). Mechanical measurements were carried out by applying tensile test loads to samples which were prepared from electrospun ultra fine non-woven fiber mats. The coaxial electrospun nanofibers were further investigated as a promising scaffold for PIECs culture. The results demonstrated that coaxial electrospun composite nanofibers had the characters of native extracellular matrix and may be used effectively as an alternative material for tissue engineering and functional biomaterials.  相似文献   

19.
A novel class of high‐flux and low‐fouling thin‐film nanofibrous composite (TFNC) membranes, containing a thin hydrophilic top‐layer coating, a nanofibrous mid‐layer scaffold and a non‐woven microfibrous support, has been demonstrated for nanofiltration (NF) applications. In this study, the issues related to the design and fabrication of a polyethersulfone (PES) electrospun nanofibrous scaffold for TFNC NF membranes were investigated. These issues included the influence of solvent mixture ratio, solute concentration, additives, relative humidity (RH), and solution flow rate on the morphology of an electrospun PES nanofibrous scaffold, the distribution of fiber diameter, the adhesion between the PES scaffold and a typical poly(ethylene terephthalate) (PET) non‐woven support, as well as the tensile properties of the nanofibrous PES/non‐woven PET composite substrates. Uniform and thin nanofibrous PES scaffolds with strong adhesion to the nanofiber‐PET non‐woven are several of the key parameters to optimize the NF performance of TFNC membranes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2288–2300, 2009  相似文献   

20.
聚乙丙交酯电纺纳米纤维膜的等离子体改性及性能研究   总被引:1,自引:0,他引:1  
采用等离子体表面处理的方法, 通过正交实验设计, 以纤维膜表面引入的氮含量为响应变量, 确定了NH3等离子体改性PLGA电纺纤维膜的最佳条件, 并在PLGA纤维膜表面成功地引入了功能性氨基基团. 研究结果表明, 改性后PLGA电纺纤维膜的力学性能有所降低, 但表面亲水性明显增强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号